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The Clinical Context

Why handcrafted features still matter in clinical speech

e End-to-end models dominate ASR, but clinical needs are different
e Limited data: Patient populations, ethical constraints
e Interpretability: Medical decisions require explanations



The Clinical Context

e Current State:
o Multiple acoustic toolkits widely used across research
o Often used interchangeably without validation
o Different research -> Different tools -> Different results?
e Research Question:
o Do different acoustic feature extraction toolkits produce comparable
results when applied to clinical speech data?



The Toolkits

OpenSmile ») openSMILE

Standardized feature
sets (eGeMAPS,
ComParE)

Widely used for clinical
usage, paralinguistic
challenges

Statistical functionals
over acoustic contours



The Toolkits

Praat

Linguistically-motivated
algorithms, manual
verification

Specialized methods
per feature type

Time-domain analysis,
formant tracking



The Toolkits

Hibrosa

Librosa

Python ecosystem
integration, recently
joining clinical adoption

Spectral methods,
probability estimation

Optimized for music,
adapted for speech



Clinical Acoustic Features

e Fundamental Frequency (FO)
o Voice baseline, prosody patterns
e Formants (F1-F3)
o Vocal tract resonances, articulation precision
e \oice Quality: Harmonics-to-Noise Ratio (HNR), Jitter, Shimmer, Amplitude
o Vocal fold health indicators
e Mel-frequency cepstral coefficients (MFCCs)
o Spectral shape, auditory-inspired representation



Dataset and Methodology

e Participants: 33 individuals with Schizophrenia Spectrum Disorder (SSD), 38
Healthy Controls (HC)
e Standardized extraction settings
o Aligned parameters: Sample rate, frame size, window type
o FO range: 55-1000Hz (clinical populations)
o Silence threshold: -60dB
o Unavoidable differences: Core algorithmic approaches
m FO: Cross-correlation (OpenSmile, Praat) vs. probabilistic methods
(Librosa)
m Formants: LPC vs. spectral peak tracking



Comparison

Results Overview
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Results

e FO mean moderate to poor agreement
e FO standard deviation negative correlations
e F1,F2, F3 consistently low correlations across tools

Group and Tool Comparison
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Results

HNR moderate correlation

Jitter/Shimmer reasonable agreement
MFCCs patterns vary across coefficients

Group and Tool Comparison
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Key Findings

e Feature reliability is highly variable across toolkits
o FO percentiles: Excellent agreement (r > 0.90)
o Formants: Systematic disagreement across all tools
o Voice quality: Moderate to good reliability
e Robust vs. sensitive features identified
o Stable extractions: FO percentiles, jitter, shimmer
o Sensitive to algorithms: FO std dev, formants, some MFCCs
e Clinical implications are significant
o Toolkit selection cannot be overlooked as methodological detalil



Responsible Al Framework

Building Trustworthy Clinical Speech Al

Transparency: Report tools, versions, parameters
Cross-validation: Multiple toolkits, consistent findings
Uncertainty quantification: Confidence in feature reliability

L
o
L
e Standardized protocols: Validated extraction pipelines



Future Directions

Same audio + Different tools = Different “biomarkers”

Deep embeddings gaining popularity, but same validation needed
Balance innovation with clinical transparency requirements
Patient safety requires reproducible methods
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