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Universities are rapidly adopting artificial intelligence in teaching and assessment, yet there is limited empirical visibility into how
these institutions publicly govern its use. We present ACAI-US79, an institutional audit of Al governance across 79 U.S. universities,
and ACAI the Academic Al Capacity Index—an interpretable measure of publicly articulated governance capacity. The audit evaluates
four domains—policy clarity, faculty support, feedback mechanisms, and Al detection tool governance—using time-bounded review of
institutionally authoritative materials. ACAI does not assess technical capability or ethical intent; it measures the public legibility of
institutional structures that allocate authority and accountability. We observe substantial variation in Al governance capacity across
institutions, with recurring gaps in procedural safeguards and feedback mechanisms. Governance capacity does not consistently track
research intensity: institutions with extensive Al research activity do not necessarily articulate stronger governance frameworks. We
release the dataset, audit instrument, and public website at http://acai-us79.org/ to support transparency, critique, and institutional

self-reflection, contributing to increased organizational accountability.
CCS Concepts: » Applied computing — Education; Law; Computer-managed instruction.
Additional Key Words and Phrases: Al, university, policy, governance

ACM Reference Format:

Anonymous Author(s). 2026. How Are U.S. Universities Responding to AI? An Audit of Governance Capacity. In Proceedings of
2026 ACM Conference on Fairness, Accountability, and Transparency (FAccT 26). ACM, New York, NY, USA, 33 pages. https://doi.org/
XXXXXXXXXXXXXX

1 Introduction

Artificial intelligence (Al) is increasingly embedded into universities, shaping teaching, assessment, research, and
administration [1, 2, 6, 10, 18, 21, 22, 42, 54, 55]. These deployments raise concerns about fairness, accountability, and
harm, yet there is limited empirical evidence about how universities govern Al use in practice. Existing evaluations
focus largely on technical systems [15], individual university responses [48], or national capacity (see Appendix F.2),
leaving a critical gap in understanding the institutional infrastructures through which Al use is authorized, constrained,
contested, revised, and supported within higher education. Moreover, U.S.-focused studies that systematically examine
institutional Al policies have largely centered on top-ranked or R1 universities [31, 56, 58], obscuring variation across
the broader higher-education landscape.

This gap matters for accountability. Universities exercise significant power over students and faculty,' and Al-related
governance decisions — such as the use of Al detection tools in academic integrity enforcement [27, 51, 59] (more in
Appendix G), faculty discretion over permissible Al use, or access to appeals — can have material consequences for

equity and due process. Despite these stakes, there is no systematic, reproducible method for auditing how universities

'We use faculty as an umbrella term for all instructional staff, including non-tenure-track faculty. We note that this label encompasses roles with differing
levels of authority, security, and participation in institutional governance, which vary across universities.
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2 Anon.

publicly articulate Al governance commitments. As a result, claims about ‘responsible AT’ in higher education often
lack an empirical foundation, risking both weak accountability and conceptual dilution of responsibility itself in the
context of Al governance.

In this paper, we present ACAI-US79, an institutional audit dataset capturing publicly articulated Al governance
practices across 79 diverse U.S. universities. From this dataset, we derive ACAI, the Academic Al Capacity Index, an
interpretable index that aggregates audit findings to produce a structured ranking of institutions based on the public
legibility of formal policies, resources, and oversight mechanisms. This ranking is not a judgment of ethical adequacy,
institutional intent, or internal practice; rather, it reflects differences in what governance artifacts are publicly visible
under a consistent audit protocol. We release the dataset, annotation schema, audit toolkit, and public interface to support
transparency, critique, and reuse, providing a baseline view of how universities currently articulate accountability
around Al through publicly accessible governance materials.

We explicitly invite alternative reuse and contestation of ACAL Institutions may reasonably dispute individual
annotations, weighting choices, or domain boundaries, and such disagreement should be treated as a productive
extension of the audit rather than a failure of the framework. Because ACAI relies exclusively on publicly available
materials and a reproducible protocol, it is designed to support re-audits, counter-audits, and institutional self-assessment
over time. In this sense, ACAI is not a static measurement, but an infrastructure for ongoing revision, critique, and
accountability grounded in the public legibility of institutional governance.

To operationalize this audit, we focus on publicly legible institutional signals, and we assess Al governance capacity
across four governance domains: A. PorLicy CLARITY, B. FacurTy SuPPORT, C. FEEDBACK Loops, and D. DETECTION
Tootrs. Annotators conduct time-bounded reviews of institutionally authoritative materials to evaluate whether relevant
governance mechanisms are present, partially specified, absent, or conflicting. These assessments are aggregated
into ACAI, yielding a transparent, diagnostic index that enables cross-institutional comparison without conflating
governance capacity with technical expertise.

Lower ACALI scores should not be read as failures of responsibility or institutional care. Rather, they indicate that
governance mechanisms are less publicly specified or harder to locate, which presents a distinct accountability risk
regardless of intent. While publicly available materials do not capture internal deliberations or informal practices,
they constitute the primary means through which universities communicate authority, procedural expectations, and
avenues for recourse. For this reason, we treat public legibility as a necessary condition for accountability and as
an appropriate object of empirical audit. Reliance on informal or “word-of-mouth” governance is not neutral: it
systematically advantages actors with greater institutional access while disadvantaging students and faculty who must
rely on publicly articulated rules. Publicly legible governance therefore establishes a minimally equitable baseline and
is a prerequisite for procedurally just institutional Al governance.

We make the following contributions:

(1) An Open Dataset, Toolkit, and Website: We release ACAI-US79, a publicly available dataset for auditing Al
governance across 79 U.S. universities, along with a reproducible annotation schema and audit toolkit (available at
https://anonymous.4open.science/r/ACAI-3D27), and public website (available at https://acai-us79.org/).
(2) The Academic AI Capacity Index (ACAI): We introduce ACAI, an interpretable index for evaluating the public
legibility of institutional Al governance, grounded in principles of accountability and procedural justice.
(3) An Empirical Institutional Audit: We apply ACAI in the first large-scale, reproducible audit of Al governance in

U.S. higher education, demonstrating that accountability gaps persist even among leading Al research institutions.
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Annotation Guidelines
You will review publicly available web pages for <UNIVERSITY> to determine whether specific Al-related policy statements are
addressed by the institution.

Use ONLY the links provided below and any pages, sections, PDFs, or subpages that are directly reachable by clicking links on
those pages (e.g., menus, internal links, or document links). Do NOT use external search engines or sources found from outside
this list: <LINKS>.

Evaluate each statement independently. Spend no more than 5 minutes per statement.

For each statement:
1. Select exactly one classification:

Present/Yes — A clear statement directly addressing the item is found on an institutional page within 5 minutes.
Partial/Implicit/Somewhat — The item is mentioned or implied, but key details are missing.

Absent/No — You reasonably searched the allowed sources and did not find relevant content.

Unclear or Took Longer Than 5 Minutes — Navigation difficulty, vague language, or time limits prevented a confident
decision.

o Conflicting Information — Different institutional sources provide contradictory guidance for the same item.

2. Provide the most relevant URL(s) from the allowed sources that support your selection. If you selected Absent or Unclear,
provide the main page(s) you checked.

Statements Organized by Governance Domain:

A. Poricy CLARITY — Policies defining institutional expectations, terminology, and academic integrity adaptations.

Al. The university defines “Al use,” “Al assistance,” or “Al-generated content”

A2. The university defines standards for citing Al-generated material.

B. FACULTY SUPPORT — Resources that enable faculty to integrate, regulate, or teach with AL

B1. The university provides guidance, training, or resources for faculty on Al-related teaching practices.

B2. Official examples of appropriate and/or prohibited Al use are provided (e.g. example Al use cases, example prompts).
B3. A faculty committee or group focused on teaching and learning about Al exists.

B4. Faculty are offered syllabus language examples (e.g. use Al/don’t use Al/selectively use Al).

C. FEEDBACK LOOPS — Mechanisms through which universities gather input, revise policies, and communicate decisions.
C1. A faculty committee or advisory group focused on university Al policy or governance exists.

C2. A student committee or advisory group focused on university Al policy or governance exists.

C3. The university publishes Al policy update logs or explains revisions.

D. DeETECTION TOOLS — Institutional stance toward Al detection technologies.

D1. The university restricts, discourages, or warns against the use of Al detection tools.

D2. Student misconduct determinations require human review and cannot be based solely on Al detection tools.

Fig. 1. Annotation Instructions for ACAI Calculation, Organized By Governance Domain: ACAI calculation details are
provided in §2.2, governance domains are detailed in §2.2.1, and additional annotation details are in Appendix C.3.

(4) A Critical Evaluation of Automated Approaches to Governance Auditing: We evaluate whether large language
models can approximate human governance judgments, showing that current automated approaches produce unstable
and misleading institutional rankings.
(5) Actionable Recommendations for Universities: We translate our findings into concrete recommendations for
strengthening institutional capacity for accountable Al governance, particularly with respect to feedback, review, and
procedural safeguards.

By focusing on institutional governance rather than technical capability, this work advances organizational ac-
countability. Institutional audits make visible the structures through which power is exercised, providing an empirical
foundation for more transparent and procedurally just Al governance in higher education.
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157 2 An Audit of Institutional Capacity
158

150 We first clarify what we mean by institutional capacity and why public legibility provides an appropriate object of

160 empirical audit. This section conceptualizes Al governance in higher education as a question of institutional capacity and

161 accountability, not technical sophistication or ethical aspiration. We treat universities as powerful organizational actors
1o that structure how Al systems are authorized, constrained, and contested through policies, procedures, and oversight
163

» mechanisms. Adopting an audit perspective, we examine the public legibility of these governance arrangements: what

165 is made visible, enforceable, and contestable to students, faculty, and other affected parties. This framing motivates our
166 audit design and the construction of ACAI as a tool for evaluating how governance capacity is institutionalized across
107 universities.

168

169

2.1 ACAI-US79: A Benchmarking Dataset

170

1 Our annotation protocol — shown in Figure 6 — operationalizes institutional capacity as publicly legible, time-bounded,

172
s and normatively specific governance, rather than as the mere presence of Al-related content. Capacity is understood as
174 what institutions make visible and actionable to affected stakeholders within reasonable time and effort constraints. The

175 empirical focus on 79 U.S. universities is motivated by the country’s prominent position in global Al capacity indices

176 [15, 32, 34, 38], detailed in Appendix F.2.
177

178 University Selection. The universities selected for the ACAI-US79 dataset and their corresponding attributes are
179 . . . . . . . .
o shown in Table 1. The dataset was constructed using a purposive, diversity-oriented selection strategy designed to

181 surface variation in how AI governance is institutionalized across U.S. higher education. The selection emphasizes

182 institutional heterogeneity along dimensions that shape authority, accountability, and public legibility.

183 Within each U.S. Census region [53] — South , West , Midwest ,and Northeast — we sought to include institutions

184 . . . T - : . .
. spanning research intensity and institutional organization. Specifically, for each region we targeted approximately

186 four institutions in each of the following categories: ‘Public Research universities (R1 or R2 ), ‘Private Research

187 universities (R1 or R2 ), and Teaching/Liberal Arts colleges, categorized according to the Carnegie Classifications

188 [4]. The choice of four institutions per category per region was a pragmatic design decision rather than a theoretical

i: threshold, balancing between breadth, depth, and cost feasibility in the audit. Institution size was not used as an
101 explicit stratification variable, thus the size distribution in ACAI-US79 emerges from the selection process and size is
192 therefore treated analytically as a contextual attribute. We split size by tertiles into 'Small , 'Medium , and (Large for

193 comparison. Overall, this structure was intended to capture differences in organizational incentives that plausibly affect
194 . .

how AI governance is articulated.
195

e Link Retrieval. For each university included in the audit, we systematically collected institutionally authoritative
197

198 documents and official web links? across seven recall-oriented categories, with examples shown in Appendix C.2. These

199 categories correspond to distinct organizational surfaces through which governance is commonly articulated [58],

200 initialized by a manual author review of a small set of university policies, and then iterated on during our search process
201

which is detailed in Appendix C.
202
203 Hence, the following categories serve as search lenses: (1) University Policies or Guidelines: University-level policies

204 addressing technology use, data governance, research ethics, or academic administration; (2) Center for Teaching & Learning:
205 Centrally maintained guidance for faculty on pedagogical use of Al syllabus adaptation, and instructional support;

206

207 2Collection of links and annotation occurred from 12/8-12/30/25.

208
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How Are U.S. Universities Responding to AI? An Audit of Governance Capacity 5

(3) Al Institute/Initiative/Center: Institutionally recognized units focused on Al digital ethics, or related governance-

relevant coordination; (4) Library Guide: Public-facing library resources addressing generative Al, citation practices,
or responsible research use; (5) Academic Integrity: Policies or guidance governing the relationship between Al au-
thorship, plagiarism, and assessment; (6) AI Committee: Formal committees or task forces charged with evaluating

or coordinating institutional responses to Al and (7) Other Relevant Links: Additional institutionally authoritative

materials relevant to Al governance.

The audit does not assume that governance capacity is limited to legally binding rules. Instead, we operationalize
capacity as institutionalization: the presence of standing reference points — such as policies, offices, committees,
or officially maintained resources — that persist over time and orient behavior by establishing expectations about
authority, coordination, and acceptable practice. They represent ongoing points of reference that a student, instructor,
administrator, member of the press, or member of the public could reasonably consult to understand how Al is governed
at the institution. In contrast, transient communications such as news articles, announcements, or blog posts were
excluded.® While such materials may signal institutional intent or activity, they do not establish durable roles, procedures,
or accountability structures. Including them would collapse institutionalization into communication and systematically
overstate governance capacity. Importantly, the links collected through this process are treated as candidate surfaces of
governance, not as governance determinations themselves. As shown in Figure 1, annotators were instructed to use
these materials as evidence when evaluating whether specific governance statements were present, partial, or absent.

We provide a detailed description of our link retrieval procedure in Appendix C.

Human Annotation via Prolific. All annotation was conducted by paid human annotators recruited via the Prolific*
platform, following the annotation instructions shown in Figure 1. Annotators labeled only publicly available institutional
materials under standard compensated microtask conditions, and no PII or sensitive data were collected.’ Tasks were
estimated to take approximately 30 minutes and were compensated at $6.00, consistent with Prolific’s recommended
compensation. Each university was independently annotated by three annotators, administered via an external survey
instrument. Participation was restricted to U.S.-based, English-fluent annotators using desktop or laptop devices,
enforced through Prolific’s prescreening tools. To preserve the audit’s focus on public legibility, annotators were
instructed not to use external search engines or prior knowledge, and each item was evaluated under a strict time limit.

5«

To support data quality, we enabled Prolific’s “reject exceptionally fast submissions” safeguard, which automatically flags
submissions completed at implausibly short durations relative to the estimated task time, helping to filter inattentive or
agent-driven responses. To assess alignment between expert and Prolific annotations, two computational PhD students
independently annotated a subset of 10 universities using the same audit protocol. Aggregate agreement between the
expert and Prolific annotations was moderate to strong (Pearson r = 0.56, Spearman p = 0.57, Kendall 7 = 0.49; all
p < 0.05), with Prolific scores exhibiting a small positive bias towards higher ratings (+0.10 on a 0-1 scale). Further, we

compare our human annotated results to an LLM-driven audit, detailed in §2.4.

2.2 ACAI: The Academic Al Capacity Index

To enable systematic comparison of governance capacity across institutions, we construct ACAI the Academic Al

Capacity Index. While the index necessarily collapses nuances present in more detailed datasets, ACAI serves as a first

3Prior studies [31, 56, 58] can be referenced for details on these communication types.
4Prolific is a crowdworker platform commonly used for academic research and data annotation tasks: https://www.prolific.com/data-annotation
SWe provide the privacy policy in Figure 8.
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6 Anon.

step toward understanding the Al governance landscape of U.S. universities. ACAI aggregates governance indicators

across four domain (Figure 1) into a single interpretable score:

100 vJa 1 vk
2de{AB,C,D} Wd (ﬁ L i Id,u,i,j)

ACAI, = (1)

Yde{ABC,D} Wd

where I, ; ; € {0,0.5,1} is the score assigned by annotator i to indicator item j within governance domain d — where
d €{A,B,C,D}: A. Poricy CLARITY, B. FAcUuLTY SuPPORT, C. FEEDBACK Loops, D. DETECTION ToOLs — at university
u, and Jy is the number of indicators in governance domain d. Indicator scores are coded as 1.0 (Present/Yes), 0.5
(Partial/Implicit/Somewhat), and 0.0 (Absent/No, Unclear or Took Longer Than 5 Minutes, or Conflicting Information).
Domain scores are computed as the mean across indicators and annotators, and then aggregated via a weighted sum
and scaled to [0, 100]. Higher values indicate greater publicly articulated AI governance capacity. Weighting coefficients,
wg, encode normative priorities about which governance functions matter most. To ensure findings are not artifacts of
these choices, we assess robustness under alternative weighting schemes, varying 1 < wy < 4 (see §section F5 and
§Appendix D for details).

A note on aggregation: We intentionally aggregate indicator scores by averaging across annotators rather than
resolving disagreement through expert adjudication or majority vote. This audit principle reflects the audit’s focus on
public legibility rather than institutional intent, internal consistency, or expert interpretation. ACAI is explicitly not
designed to capture how governance materials might be interpreted by legal counsel, administrators, or domain experts,
but how they are encountered by external readers operating under realistic time and access constraints. When multiple
annotators reviewing the same publicly available materials arrive at different judgments about whether a governance
mechanism is present, partial, or absent, that variation is treated as an empirical signal of ambiguity in the underlying
institutional artifacts. Hence, annotator disagreement is evidence about how clearly governance is articulated [3].
Averaging across multiple annotations aligns with the audit framing of ACAI as a measure of publicly articulated
governance capacity: governance that requires expert interpretation or insider knowledge to interpret functions as
weaker governance in practice, regardless of internal deliberation or intent. ACAI thus measures how governance is
encountered by external readers under realistic constraints, not how it might be interpreted by insiders. Because the

index relies on publicly available materials, it should be interpreted as a lower bound on institutional capacity.

2.2.1 Governance Domains. We now turn to the four governance domains covered in our study:

A. Poricy CrariTy. This domain captures the extent to which universities publicly articulate clear, institution-level
expectations regarding Al use in academic contexts, following a long legal tradition establishing the importance of
clear definitions to support stable legal interpretation [19, 28]. Policy clarity includes the definition of key terms (e.g.,
“Al use,” “Al assistance,” or “Al-generated content”), guidance on attribution or citation of Al-generated material, and
the adaptation of existing academic integrity frameworks to account for Al-mediated authorship. Prior work has shown
heterogeneity in how universities define and communicate Al-related expectations, with many institutions relying
on vague or decentralized guidance [31, 56]. In the absence of clear, publicly legible policy language, responsibility
for interpreting acceptable Al use is often shifted to individual faculty or students, increasing the risk of inconsis-
tent enforcement and inequitable outcomes [41]. Policy clarity therefore functions as a foundational component of

institutional governance capacity, establishing shared reference points for authority, compliance, and contestation.
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How Are U.S. Universities Responding to AI? An Audit of Governance Capacity 7
ACAI Rank CSRankings 4y Rank  Institution Type Research Activity =~ Region Size ACAI Score
1 105 University of New Hampshire Public Research R1 Northeast Medium 81.82
2 96 Portland State University Public Research R2 West Large 80.30
3 8 Stanford University Private Research R1 West Medium 80.30
4 14 University of Texas at Austin Public Research R1 South Large 77.27
5 42 University of Notre Dame Private Research R1 Midwest Medium 75.76
6 137 Baylor University Private Research R1 South Large 74.24
7 44 University at Buffalo Public Research R1 Northeast Large 74.24
8 79 University of Florida Public Research R1 South Large 71.21
9 9 University of Michigan at Ann Arbor Public Research R1 Midwest Large 71.21
10 un. Rowan University Public Research R2 Northeast Large 71.21
11 29 Stony Brook University Public Research R1 Northeast Large 71.21
12 un. Lewis & Clark College Teaching/Liberal Arts = West Small 69.70
13 7 University of California, Berkeley Public Research R1 West Large 69.70
14 27 Texas A&M University Public Research R1 South Large 69.70
15 91 Case Western Reserve University Private Research R1 Midwest Medium 69.70
16 un. Lafayette College Teaching/Liberal Arts = Northeast Small 69.70
17 un. California State University, Long Beach Public Research R2 West Large 68.18
18 25 University of North Carolina at Chapel Hill Public Research R1 South Large 68.18
19 6 Cornell University Private Research R1 Northeast Medium 68.18
20 117 Brandeis University Private Research R1 Northeast Small 68.18
21 169 Southern Methodist University Private Research R1 South Medium 68.18
22 un. Chapman University Private Research R2 West Medium 68.18
23 un. Howard University Private Research R1 South Medium 68.18
24 81 University of South Florida Public Research R1 South Large 66.67
25 100 Syracuse University Private Research R1 Northeast Large 66.67
26 un. University of Wyoming Public Research R1 West Medium 65.15
27 37 The Ohio State University Public Research R1 Midwest Large 65.15
28 15 University of Southern California Private Research R1 West Large 65.15
29 un. Mercer University 9 Private Research R2 South Medium 63.64
30 142 DePaul University Private Research R2 Midwest Large 63.64
31 29 Arizona State University Public Research R1 West Large 63.64
32 un. Northern Illinois University Public Research R2 Midwest Medium 63.64
33 un. University of South Alabama Public Research R2 South Medium 63.64
34 un. Fordham University Private Research R2 Northeast Medium 63.64
35 169 Florida Institute of Technology Private Research R2 South Small 63.64
36 un. Tllinois State University Public Research R2 Midwest Large 62.12
37 un. Pepperdine University Private Research R2 West Medium 60.61
38 46 University of Chicago Private Research R1 Midwest Large 60.61
39 un. Montclair State University Public Research R2 Northeast Medium 60.61
40 100 Binghamton University Public Research R1 Northeast Medium 60.61
41 un. Lake Forest College Teaching/Liberal Arts = Midwest Small 60.61
42 79 Iowa State University Public Research R1 Midwest Large 57.58
43 un. Carleton College Teaching/Liberal Arts = Midwest Small 57.58
44 16 University of Washington-Seattle Public Research R1 West Large 57.58
45 un. San José State University Public Research R2 West Large 57.58
46 un. Southern University and A & M College Public Research R2 South Small 56.06
47 un. Colby College Teaching/Liberal Arts = Northeast Small 56.06
48 un. Skidmore College Teaching/Liberal Arts = Northeast Small 56.06
49 un. Saint Louis University Private Research R1 Midwest Medium 56.06
50 un. Reed College Teaching/Liberal Arts = West Small 56.06
51 un. Southern Wesleyan University Teaching/Liberal Arts = South Small 54.55
52 un. Davidson College Teaching/Liberal Arts = South Small 54.55
53 un. University of Colorado Colorado Springs Public Research R2 West Medium 54.55
54 2 University of Illinois Urbana-Champaign Public Research R1 Midwest Large 54.55
55 142 Wichita State University Public Research R2 Midwest Medium 53.03
56 un. Wofford College Teaching/Liberal Arts = South Small 51.52
57 un. Georgia Southern University Public Research R2 South Large 51.52
58 un. University of Denver Private Research R1 West Medium 51.52
59 un. Westminster University Teaching/Liberal Arts = West Small 50.00
60 un. Ball State University Public Research R2 Midwest Large 48.48
61 un. Rhodes College Teaching/Liberal Arts = South Small 48.48
62 49 Brown University Private Research R1 Northeast Medium 48.48
63 un. Clark University Private Research R2 Northeast Small 48.48
64 un. Abilene Christian University Private Research R2 South Small 48.48
65 un. Wesleyan University Teaching/Liberal Arts = Northeast Small 46.97
66 100 Illinois Institute of Technology Private Research R2 Midwest Small 46.97
67 142 Nova Southeastern University Private Research R1 South Large 46.97
68 un. Kean University Public Research R2 Northeast Medium 45.45
69 un. Occidental College Teaching/Liberal Arts = West Small 43.94
70 61 Stevens Institute of Technology Private Research R2 Northeast Small 43.94
71 71 California Institute of Technology Private Research R1 West Small 43.94
72 un. Long Island University Private Research R2 Northeast Medium 42.42
73 un. Marquette University Private Research R2 Midwest Medium 40.91
74 un. Beloit College Teaching/Liberal Arts = Midwest Small 39.39
75 un. Grinnell College Teaching/Liberal Arts = Midwest Small 34.85
76 un. Jackson State University Public Research R2 South Small 31.82
77 un. Clark Atlanta University Private Research R2 South Small 28.79
78 un. Creighton University Private Research R2 Midwest Medium 27.27
79 un. University of Massachusetts at Dartmouth Public Research R2 Northeast Small 27.27

Table 1. Institutional Rankings for ACAI-US79 with ACAIl and CSRankings a1: Details for ACAI calculations in §2; details for
CSRankingsar in Appendix E; Region is classified based on the U.S. Census [53]; Type and Research Activity are classified based on the

Carnegie Classifications [4]; Size is split based on tertile buckets.
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B. Facurty SurpoRrT. This domain reflects the extent to which universities provide institutionally maintained re-

sources that enable faculty to engage with Al in teaching and assessment in informed and supported ways — ultimately
to support student learning [30]. Faculty support includes guidance on pedagogical uses of Al training opportunities,
example use cases or prohibitions, model syllabus language, Al professional development opportunities, and the presence
of faculty-focused committees or working groups concerned with Al and teaching [31, 41, 56]. Faculty are frequently
expected to make consequential decisions about Al use — such as whether and how to permit Al in coursework —
without adequate institutional support or coordination [31, 41]. The presence of formal faculty support mechanisms
signals that responsibility for AI governance is not delegated entirely to individual faculty, but is instead recognized also
as an institutional obligation requiring shared infrastructure and expertise. Importantly, faculty support directly impacts
students: clear guidance helps faculty communicate consistent expectations to students, while faculty committees and

resources provide the foundation for student-facing policies articulated in the other domains.

C. FEepBACK Loors. This domain reflects concerns articulated in prior survey research and aligns with recommen-
dations from the July 2025 American Association of University Professors (AAUP) report Artificial Intelligence and
Academic Professions [41]. The report draws on approximately 500 survey responses from AAUP members regarding
their experiences with Al and other educational technologies. A central finding was a widespread concern (reported
by 71% of respondents) about the disconnect between administrative decision-making on Al policy and meaningful
faculty and student input. In response, the report recommends the adoption of “meaningful shared governance policies
and practices,” including committees composed of faculty, staff, and/or students, as well as increased transparency
around Al-related decisions and policy changes. More broadly, scholarship on algorithmic governance emphasizes
that accountability requires institutionalized mechanisms for participation, feedback, and revision over time. Absent
such mechanisms, governance frameworks risk functioning as static or symbolic commitments rather than durable,

contestable structures of authority [33, 46]. For an extended discussion on this subdomain, see Appendix F.1.

D. DeTECTION ToOLs. This domain captures institutional stances toward Al detection technologies used in academic

integrity enforcement [51, 59]. Indicators in this domain assess whether universities restrict, discourage, or explicitly
govern the use of Al detection tools, and whether procedural safeguards — such as requirements for human review —
are articulated [26]. Prior research has documented significant technical limitations and bias in Al detection systems,
as well as their potential to produce false positives with serious consequences for students [27, 56]. Despite these
risks, institutional guidance on detection tools is often limited, ambiguous, or silent on procedural constraints [31],
potentially algorithmically shortcutting due process® protections [25, 43], and with little-to-no contestability [29].
Publicly articulated governance in this domain is therefore critical for clarifying the role of detection tools in decision-
making, delineating authority between automated systems and human judgment, and protecting due process in academic
misconduct determinations. For an extended discussion on this subdomain, see Appendix G.

The governance domains used in ACAI are not intended as an exhaustive or universal taxonomy. They reflect
governance mechanisms that are currently most visible and auditable within U.S. higher education using publicly
available materials and realistic time constraints. Governance domains may vary across national, legal, and institutional
contexts, and future audits may adapt or expand this structure accordingly. In particular, as universities increasingly
deploy Al monitoring [44] and auditing [42] systems (see §3.2), future iterations of ACAI may incorporate additional
%As noted by Khattak [25] on the U.S. context: “As artificial intelligence systems increasingly assist decisionmaking in judicial and administrative processes,
courts and administrative agencies face mounting pressure to merge innovation with legal tradition. These technologies are often praised for their efficiency.
However, when the mechanisms by which they operate are impenetrable, they threaten to infringe upon core due process protections. The Constitution guarantees

that individuals be informed of decisions affecting their rights, and to have a fair opportunity to contest those decisions in a meaningful way. When unclear
algorithms replace human judgment, those guarantees are at risk of becoming procedural only by name.”
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Fig. 2. Aggregate ACAI and governance domain subscores (A,B,C,D) show that Al governance capacity varies with
organizational structure, and that governance participation (C) and due process (D) are undersupported (>F1, F2).

governance domains to capture these practices. We therefore view ACAI as a flexible audit framework rather than a

fixed index, designed to evolve alongside institutional Al governance.

2.3 Approximating Al Research Activity with CSRankings s

To contextualize institutional Al governance capacity relative to Al research activity, we used the rankings provided
by CSRankings, a widely used, publicly available ranking of computer science research output shown in Figure 9.
CSRankings aggregates publication counts across major computer science venues and allows filtering by research area
and time period; for details on the specific configuration used in this study, see Appendix E. As shown in Table 1, we
report the CSRankings 47 rank of each ACAI-US79 university to facilitate our comparison of Al governance capacity and
Al research activity, and examine correlations between these two rankings as shown in Figure 3. Notably, CSRankings
only ranks research-active institutions by publication output; Teaching/Liberal Arts colleges and institutions without
substantial computer science research activity do not appear in CSRankings and are therefore excluded from the

correlation analysis in Figure 3.

2.4 LLM Study

Because universities increasingly rely on Al systems to assess, classify, and enforce academic norms [11, 16, 22, 44], we
conducted an LLM study to examine whether similar systems can meaningfully evaluate institutional Al governance:
we conducted an LLM study aligned with the ACAI-US79 audit framework. The prompt used is shown in Figure 11; we
perform three independent runs for each sampling temperature 7 € {0.5, 1.0, 1.5}. For each university-statement pair,

the model was required to return a single categorical score and supporting URLs in a strictly validated JSON schema.

3 Findings

We use exploratory subgroup comparisons to examine how Al governance capacity is differentially institutionalized

across higher-education contexts. Contrasts in ACAI scores across institutional type, research activity, region, and size
Manuscript submitted to ACM



469
470

471

473
474

476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499

500

502
503

505

506

508
509

511
512
513
514
515
516
517
518
519

520

10 Anon.
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Fig. 3. Spearman p rank correlations between ACAI ranks and CSRankings4; ranks across institutional subgroups show
that Al governance capacity and Al research output are almost entirely uncorrelated (>F3): All Cls cross zero, unranked
CSRankingsar universities are excluded, and categories with n < 5 are dropped. We provide detailed results in Table 7.

are used as a descriptive lens on organizational variation, with effect sizes and confidence intervals reported to convey
the magnitude and uncertainty of observed differences. These subgroup comparisons are not treated as confirmatory
evidence: the audit sample is purposive rather than probabilistic, subgroup categories are administratively defined
and analytically coarse, and multiple overlapping contrasts are examined without correction. Accordingly, the results
support interpretive claims about institutional accountability and structural incentives, rather than population-level

inference, causal explanation, or claims of statistically significant subgroup differences.

> F1: Al governance capacity varies with organizational structure. As shown in Figure 2, 'Public Research
universities tend to occupy higher positions in the ACAI distribution than ‘Private Research or Teaching/Liberal Arts
universities; larger institutions ((Large and ‘Medium ) tend to exhibit higher ACAI scores than ‘Small ones; ‘R1
schools tend to show higher ACAI scores than R2 and unclassified ( - ) schools; and schools in the ‘Western region
tend to show slightly higher ACAI scores. These differences align with known variation in institutional oversight
arrangements and coordination demands: public universities commonly operate under statutory or regulatory ac-
countability frameworks and maintain centralized administrative infrastructures, which are visible in the form of
institution-level policies, guidance pages, and standing committees. In contrast, institutions characterized by more
decentralized organizational structures often rely on localized practices, which may be less consistently reflected
in publicly accessible governance artifacts. Additionally, large institutions typically coordinate governance across a
greater number of academic units, faculty, and students, which is reflected in the presence of centrally maintained and
publicly legible reference points. Overall, even among the highest-capacity institutions, ACAI scores reveal substantial
room for improavement. For example, UC-Berkeley - the highest-scoring institution among Large, Public Research,
R1 universities in the West — achieves an ACAI score of 69.70, indicating approximately 30% of audited governace
indicators were absent, partial, or unclear across the four domains.

Importantly, ACAI does not assess research quality, ethical commitments, or internal decision-making processes. It
captures whether Al-related governance mechanisms are publicly articulated and institutionally maintained. From this
perspective, lower ACAI scores should not be interpreted as evidence of weaker concern or expertise, but as indicative
of different approaches to organizing and communicating governance. These findings highlight a structural tension:
institutional arrangements that emphasize decentralization or flexibility may be less visible in public-facing governance
artifacts, even when substantive internal practices are present. However, this lack of public legibility introduces a
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s t  Pearsonr Spearmanp Kendallz Spearman95%CI Mean A  Apottom 25% ATop 25%

522

503 0.5 0.56™** 0.60™** 0.43*** [0.42,0.74] 15.39 [0,5] [21,69]

w04 1.0 0.52*** 0.54™** 0.38"** [0.36,0.71] 16.23 [0,5] [22,70]

sos 1.5 0.53"** 0.52*** 0.37*** [0.30,0.68] 17.34 [0,7] [24,67]

526 Table 2. Correlations between human-labeled ACAI ranks and LLM-labeled ACAI ranks indicate that LLMs only weakly
527 approximate human interpretive judgment (> F4): For institution i, the absolute rank gap is defined as A(i) = |rankgyuman (i) —

rankppm (i) |. Agottom 25% and Atop 259 report the minimum and maximum values of A; among institutions in the lower and upper
quartiles of the rank gap distribution. Spearman correlations additionally report bootstrap 95% confidence intervals.

specific accountability risk: reliance on informal guidance or word-of-mouth governance differentially advantages

actors with greater institutional access, while disadvantaging students and faculty who must rely on publicly accessible

535 rules and procedures. Publicly articulated governance capacity thus functions as a necessary condition for procedural
536 accountability, establishing a minimally equitable baseline that does not depend on social transmission or insider
7 knowledge.

> F2: Al governance capacity is concentrated in policy articulation rather than participation or process.
Figure 2 reveals that across institutional types, sizes, research intensities, and regions, scores in A. PorLicy CLARITY
and B. FACULTY SUPPORT are systematically higher than those in C. FEEDBACK Loors and D. DETECTION TooLs. This
543 consistent structural pattern indicates that publicly articulated AI governance capacity is concentrated in domains
St oriented toward rule articulation and instructional guidance, rather than in mechanisms that enable participation,
feedback, or procedural constraint.

Notably, this gap persists even among institutions with otherwise high aggregate ACAIscores. (Large , ‘Public Research ,
548 and (R1 universities — while exhibiting higher overall governance capacity - still show pronounced deficits in feedback
and detection tool governance relative to policy articulation. This pattern suggests that differences are primarily
quantitative rather than qualitative: Al governance capacity scales with organizational resources, but its internal compo-
sition remains skewed toward static guidance rather than durable procedural safeguards. In this sense, higher-capacity
553 institutions often extend the same governance model rather than adopting qualitatively different forms of participatory
554 or process-oriented governance.

As shown in Figure 2, although AI detection tools are frequently referenced in academic integrity materials, explicit
procedural guidance governing their use is rare. This aligns with the findings of Wang et al. [56], who found in their
558 analysis that while 57% of universities in their dataset mentioned common tools, none explicitly recommended their use.
559 Institutions often fail to specify whether detection tools are advisory or determinative, how results should be interpreted,
what safeguards exist against error, or what recourse is available to affected students. This gap creates ambiguity
sm around authority and enforcement, and risks inconsistent or discretionary application in practice, as expanded upon in
563 Appendix G, directly harming students, and creating the potential for an adversarial relationship between students and

faculty which is counterproductive to a healthy learning environment.

566 > F3: Al governance capacity is largely uncorrelated with Al research output. As shown in Figure 3, Al
governance capacity (ACAI) does not strongly correlate with Al-specific research output (CSRankings 45), falling in the
560 gray range; this dispersion indicates that Al technical leadership alone does not reliably translate into strong, visible
570 governance practices. This is further demonstrated in Table 1: The highest ACAI score is achieved by the University

571 of New Hampshire, followed by Portland State University and Stanford University. Two of the top three institutions
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are ' Public Research universities, including one classified as R2 , and three within the top 20 are 'Small institutions,
two of which are solely 'Teaching/Liberal Arts colleges, illustrating that high levels of publicly articulated governance
capacity are observed across a range of institutional types and research classifications. Across the full sample, several

Public Research / R2 universities — such as Rowan University and California State University, Long Beach - appear in
higher positions in the ACAI distribution than many ' Private Research /'R1 universities with substantial Al research
activity. Conversely, multiple ‘Private Research /'R1 universities — such as Brown University and the California
Institute of Technology — appear in the lower half of the ACAI distribution despite significant contributions to Al
scholarship. These contrasts indicate that Al research intensity and Al governance capacity are orthogonal dimensions

of institutional capability.

> F4: LLMs only partially reproduce human governance judgments. As shown in Table 2, across temperatures,
LLM-generated ACAI rankings exhibit moderate ordinal agreement with human judgments (p = 0.52 — 0.60), yet
individual institutions are frequently misranked, with mean absolute rank errors of approximately 15-17 positions.
Importantly, in the aggregate these errors are not symmetric. As shown by the quartile breakdowns, institutions in the
upper quartile of the rank-gap distribution experience extreme misrankings of up to 67-70 positions — nearly inverting
the relative ordering of affected institutions. Even the lower quartile exhibits nontrivial discrepancies (0-5 positions). This
pattern indicates that LLM outputs are structurally unstable. Taken together, these results suggest that while LLMs may
approximate coarse aggregate patterns, they fail to reliably reproduce the fine-grained, interpretive distinctions required
for institutional governance audits. Governance evaluation depends on contextual reading, procedural inference, and
judgment under ambiguity — capacities that are not robustly captured by current LLM-based approaches. As a result,
automated audits risk introducing arbitrary or misleading institutional comparisons, showing the continued necessity

of human-centered audit methodologies for evaluating publicly articulated governance capacity.

> F5: ACAI rankings are robust to weighting choices and individual annotators. To assess whether ACAI
rankings are artifacts of either normative aggregation choices or variation in annotator judgments, we conducted a series
of robustness analyses varying both domain weights and annotator inclusion. We first evaluated four weighting schemes:
an indicator-weighted baseline (wa=2, wg=4, we=3, wp=2), equal (wa=1, wg=1, wo=1, wp=1), policy-heavy (wa=1,
wp=1, we=2, wp=2), and teaching-heavy (ws=1, wg=2, we=1, wp=1), using percentile ranks. Rankings were highly
stable across weighting schemes (Spearman p = 0.93-0.99, Pearson r = 0.93-0.99). Mean maximum rank shifts were
modest 16.28 ranks, with an interquartile range of 14.5-22.5 ranks and a maximum of 46 ranks; details in Appendix D.

We compute inter-annotator agreement using multiple complementary metrics. At the level of individual items,
agreement is modest and variable (Krippendorff’s @ = 0.26), reflecting the interpretive and normative nature of
governance assessment and the heterogeneity of institutional documentation. Average pairwise agreement shows a
similar pattern (mean = 0.48), indicating systematic but incomplete convergence among annotators. When indicators
are aggregated at the governance domain-level, agreement improves (o = 0.30), suggesting that higher-level governance
constructs are more consistently interpretable than individual policy statements. We also evaluated robustness to
individual annotators using leave-one-annotator-out recomputation of ACAI scores under the indicator-weighted
scheme. Across all three exclusions, recomputed scores remained strongly correlated with the full-annotator index (r =
0.83-0.87, p = 0.75-0.87), indicating that no single annotator systematically altered the relative ordering of high- or

low-capacity institutions.
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Fig. 4. Interactive map of ACAI-US79 at https://acai-us79.org/, visualizing the 79 U.S. universities and describing their publicly
articulated governance capacity. Institutions are shown as clickable markers and ranked by ACAl score, with filters enabling comparison
across research activity, institutional type, region, and size. Selecting an institution reveals its score and links to the publicly available
policies, guidance, and governance materials reviewed in the audit, supporting traceability and independent inspection of how
governance capacity is publicly articulated.

3.1 University Policy Recommendations

Based on the audit findings, we outline a set of policy recommendations aimed at strengthening institutional Al

governance capacity in higher education.

> R1: Establish a centralized institution-level Al governance reference point (following >F1, F3). Universities
should maintain clearly identifiable, centrally managed points of reference — such as policies, standing guidance pages,
or designated offices — that articulate how Al use is governed. Reliance on informal norms or dispersed documentation

makes governance difficult to locate and unevenly accessible to students and faculty.

> R2: Provide procedural clarity around academic integrity and Al detection tools (following >F1, F2).
Where Al detection tools or integrity enforcement mechanisms are referenced, institutions should articulate clear
procedures governing their use, limits, appeal processes, and responsible parties. Absent such guidance, detection

practices risk being experienced as opaque, discretionary, or punitive.

> R3: Formalize feedback and revision mechanisms (following 1>F2). Governance capacity is strengthened when
institutions specify how Al-related policies are reviewed, updated, and contested over time. Standing committees, task

forces, or revision timelines signal that governance is ongoing rather than static or symbolic.

> R4: Treat public legibility as a core governance requirement (following >F1, F2, F3). Institutions should
evaluate Al governance materials from the perspective of reasonable users — students, faculty, and administrators — who
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must locate and interpret guidance under time constraints. Governance that exists but is difficult to find or interpret

functions as limited governance in practice.

3.2 Future Directions

Future work should examine how emerging forms of Al-mediated surveillance and labor automation jointly erode
institutional governance capacity in higher education. Universities are rapidly deploying Al-based monitoring systems
- such as Al detection tools (see §2.2.1 and Appendix G), fully automated proctoring based on behavioral analytics
such as eye-tracking and click-tracking [44], fully automated verbal exams with voice AI [22] and LLM-as-a-judge
grading [11, 16] — under the language of integrity and efficiency, yet these systems operate within asymmetrical
power relations that render consent effectively coercive [12, 14, 45]. Students cannot meaningfully opt out without
material penalty, while governance mechanisms lag behind technological adoption. At the same time, universities are
reducing human interpretive labor through adjunctification while increasingly automating Al-mediated instruction
and auditing [13, 42], displacing the very actors — teaching assistants, faculty, and staff — who translate policy into
practice and provide critical feedback on institutional decisions. Together, these trends expand computational oversight
while hollowing out human oversight, producing a net transfer of power from institutional governance to technical
systems. Future research should develop participatory audit frameworks for educational Al that include students,
faculty, and staff; foreground transparency, contestability, and review; and treat interpretive labor as a core governance

infrastructure.

4 Conclusion

We present a large-scale institutional audit of publicly articulated AI governance in U.S. higher education, shifting
attention from technical systems to the organizational infrastructures through which Al-related authority is exercised.
Through ACAI-US79, a publicly released dataset of governance annotations across 79 U.S. universities, and the Academic
Al Capacity Index (ACAI), we produce a comparative ranking of institutions based on the public legibility of their AI
governance capacity. This ranking reveals substantial unevenness: governance capacity is frequently concentrated in
rule articulation rather than in mechanisms for participation, feedback, or procedural safeguards — particularly around
Al detection tools. Importantly, higher ACAI rankings do not consistently align with Al research intensity, indicating
that institutional accountability is shaped more by organizational design and incentives than by technical leadership
alone. While ACAI is a ranking, it is intended as a diagnostic rather than a normative judgment of institutional quality
or ethical commitment: it captures what universities publicly formalize and communicate at a specific point in time, not
internal deliberations, intent, or expertise. To support transparency, contestation, and longitudinal analysis, we publicly
release ACAI-US79, the audit instrument, and an accompanying website that makes underlying governance artifacts
directly inspectable and enables future re-audits as institutions update their policies. By rendering Al governance
structures visible and comparable, this work provides an empirical foundation for studying institutional accountability

and for advancing accountable Al governance in higher education.

5 Generative Al Usage Statement

We responsibly used Al technologies (ChatGPT, v5) in this paper to assist with search, and the styling and language of

the writing, as well as code assistance.
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University or Organiza- Resource Name Comments Link

tion

University of La Verne List of institutions with Al ~ “We found that most universities that we surveyed have Link
guidelines some kind of statement or set of guidelines for genAl in the

classroom. This list is far from exhaustive.”
Western University of  University Policies on Gen-  “Collection of university policies and websites. Questions?  Link

Health Sciences erative Al Contact CETL@westernu.edu.”

Northeastern University A moderated list of Al syl-  “If you would like to submit your course guidelines/policy ~ Link
labus statements or revise your submission, please submit it in this form.”

Northeastern University A moderated list of Al in-  “This document is maintained by Lance Eaton. You are wel- Link
stitutional policies come to share it with other individuals, groups, and organi-

zations. To view the policies, please select the “Policies” tab
in this spreadsheet. If you would like to submit your policy,
please complete this form (https://bit.ly/ Al-Institutional-
Policies) and it will show up here within 24-48 hours.”
Gradpilot The State of Alin College  “Navigate Al usage rules across 150+ American universities”  Link
Admissions

Table 3. Prior datasets and resource collections related to institutional Al governance and policy articulation, situating
ACAI-US79 within the broader landscape of governance-focused audits.

[57] Langdon Winner. 1980. Do Artifacts Have Politics? Daedalus (1980), 121-136.

[58] Chuhao Wu, He Zhang, and John M. Carroll. 2024. AI Governance in Higher Education: Case Studies of Guidance at Big Ten Universities.
arXiv:2409.02017 [cs.HC] https://arxiv.org/abs/2409.02017

Junchao Wu, Shu Yang, Runzhe Zhan, Yulin Yuan, Lidia Sam Chao, and Derek Fai Wong. 2025. A survey on llm-generated text detection: Necessity,
methods, and future directions. Computational Linguistics 51, 1 (2025), 275-338.

Jiawei Zhang and Boris Paal. 2025. A Three-Layered Framework: An AI Governance Guide for Global Policymakers. (2025). https://papers.ssrn.
com/abstract=5241351

[59

[60

A Scope & Limitations

First, our sample is limited to 79 universities, which, although diverse in size and mission, cannot capture the full
range of institutional practices globally. Second, the analysis is predominantly USA-centric, reflecting the regulatory,
cultural, and policy context of U.S. higher education. Third, our reliance on publicly available institutional data may

omit informal practices or internal decision-making processes that shape outcomes but are not externally visible.

B ACAI-US79 Comparable Datasets

As shown in Table 3, several prior efforts examine how universities articulate institutional responses to Al, primarily
through collections of publicly available policies, guidelines, and administrative resources, motivating the need for a

systematic, governance-focused audit such as ACAI-US79.

C ACAI-US79 Iterative Link Categorization Process

This section describes the iterative link categorization process used to construct ACAI-US79: Figure 5 gives an overview
of the process, and Figure 6 shows the detailed annotator instructions for Phases II and III. Because institutional
Al governance is unevenly distributed and inconsistently labeled across universities, we employ a recall-oriented,
multi-phase procedure that surfaces publicly legible, institutionally authoritative materials while enforcing a clear
boundary between governance capacity and general Al research or outreach.
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Phase I: LLM Retrieval & Screening

We use an LLM to generate candidate links for each
category, then manually screen them to remove
errors, hallucinations, and off-scope pages.

Phase II: Schema Refinement

We refine the link schema (T1-T7) based on
patterns in the validated links from Phase I. This
strengthens our Phase lll search process.

Anon.

Phase llI: Google Search Retrieval

Using the refined schema, we run targeted Google
searches for each university x category to identify
additional institutionally authoritative Al-related pages.

T1. Rules/Policies/Regulations T1. University Rules/Policies/Regulations T1. University Rules/Policies/Regulations
T2. Center for Teaching & Learning T2. Center for Teaching & Learning T2. Center for Teaching & Learning

T3. Al Institute/Initiative/Center T3. Al Institute/Initiative/Center/Hub/AI@U T3. Al Institute/Initiative/Center/Hub/AI@U
T4. Library »| T4, Library/Library Guides >  T4. Library/Library Guides

T5. Academic Integrity T5. Academic Integrity/Honor Code T5. Academic Integrity/Honor Code

T6. Al Committee T6. Al Steering Committee/Task Force T6. Al Steering Committee/Task Force

T7. Other Relevant Links T7. Other Relevant Links T7. Other Relevant Links

X removal of dead links

X removal of incorrect links (e.g., wrong university)
X removal of Al-hallucinated links

X removal of news links

X removal of announcements

Fig. 5. Overview of Iterative Link Categorization Process: See Figure 6 for more details on Phases Il and IlI.

The seven categories (T1-T7) are neither mutually exclusive nor collectively exhaustive. In practice, Al governance
materials are unevenly distributed across institutional units or consolidated into a small number of centralized resources.
As a result, a single link may be relevant to multiple categories, while other categories may contain no links for a
given institution. Such empty cells reflect genuine variation in how Al governance is organized and communicated, not
missing data or annotation error. Category membership should therefore be interpreted as evidence of where—and how
legibly—governance functions are articulated in public-facing materials.

Phases I and II are deliberately recall-oriented and surface a wide range of Al-related materials, including research
and outreach content. Phase III enforces the conceptual boundary of the audit by removing links that are Al-related
but governance-irrelevant, such as research labs, grants, or faculty-led initiatives that do not articulate institutional
authority or procedural expectations. This consolidation step prevents research-intensive institutions from appearing
more “governed” simply due to higher volumes of Al-related content and ensures that institutional capacity is not
conflated with research productivity. The resulting link set retains only publicly legible, institutionally authoritative
governance artifacts, such as standing policies, centrally maintained guidance, and formal committees. By narrowing
annotator attention to governance-relevant materials, Phase III also improves annotation consistency and strengthens
the construct validity of the audit.

We do not include the following types of links, because we found in Phases I and II of our iterative link categorization
process that these types of links generally weren’t relevant to our annotation criteria (*) or were separate from our
focus in this work (*):

e Legal / General Counsel*: Especially for risk, compliance, data use, copyright, FERPA, and contracts involving
Al tools. We also think that students have access to a variety of Al tools separate from those visible by the
university.

e Research Office / Office of Sponsored Programs*: Research oversight is mediated through specialized
mechanisms (e.g., Al use in grants, data management plans, human subjects, and responsible research conduct)
separate from the present audit, which focuses on governance as enacted through core university functions
shaping teaching, assessment, and student experience.

e Data Governance / Privacy Office™: Sometimes separate from IT; increasingly relevant for Al training data
and student data use.

o Accessibility / Disability Services': ATl accommodations, assistive tech, and equity considerations. While

critically important for Al equity, guidance in this area is often individualized/case-specific.
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937 Phase II: LLM Cleanup
938 For each university and each category (T1-T7), apply a conservative cleanup pass, removing links only when they
939 are clearly out of scope. When determining relevance would require nontrivial investigation beyond initial screening, we
940 conservatively retain the link and defer judgment to the annotation process, where deeper inspection is already required. This
o041 typically includes links that:
942 e Are non-authoritative (i.e., not published by the university)
043 e Are dead, redirecting, or hallucinated
044 o Are narrowly subject, department, or graduate school specific rather than university-level
o5 o Are strictly research-focused
91; o Consist solely of news, announcements, or event listings
) e Provide application instructions for prospective students
o o Are intended for university communications or marketing staff
48 o Require institutional login for access
0 Additionally, when verification is straightforward:
950
o e Remove malformed entries (e.g., markdown artifacts instead of valid links)
o e Remove excessive sublinks pointing to the same underlying page
952 . o
e De-duplicate or re-categorize links
s Phase III: Link Identification
s For each university and each category (T1-T6), if a clear main link has not already been identified:
. (1) Identify the Authoritative Institutional Surface and Any Clearly AlI-Related Subpages (Skip to Step #2 for T1)
%56 (a) Perform a Google search for “University” + “Category”
37 (b) Navigate to the primary institutional landing page(s)
958 (i) Review standard navigation paths (e.g., scrolling the page, examining menu bars)
959 (ii) Include any subpages that are clearly Al-related
960 (iii) If additional clearly Al-related subpages are encountered during exploration, include them
961 (2) Targeted Confirmation Search (If no Al-related content is visible in Step #1; except T3 and T6, which explicitly
962 reference “AI”)
963 (a) Perform a Google search for “University” + “Category” + “Al”
064 (b) Include any institutionally authoritative pages that are clearly relevant
065 (3) If no suitable links are identified, record “None” for that category.
) (4) Mark the university as complete once all categories are reviewed.
966
967
968 Fig. 6. Annotation Instructions for Phases Il and Il of Iterative Link Categorization Process.
969
970
071 e Human Resources™: Staff and faculty use of Al for hiring, evaluation, or administrative work.
972 e Admissions™: Policies on Al-assisted application materials are often separate from academic integrity rules.
7 e Graduate School™: Graduate-specific guidance often differs from undergraduate rules.
974
o7 e Department or College-Level Pages*: Many institutions defer Al guidance to colleges (e.g., Engineering,
976 Business, Law) or even individual departments.
977 This dataset reflects publicly available, institutionally maintained web resources and therefore has a few key
778 limitations. First, universities differ substantially in how Al-related guidance is organized, labeled, and distributed across
979
050 administrative units, which may lead to uneven coverage across institutions. We aimed to yield equitable coverage with
081 our iterative link categorization process (Figure 5) as to correctly capture the heterogeneous ways in which different
982 universities — varying in region, research activity, student population size, and more as discussed in §?? — share and
o8 present Al policy. Second, the dataset captures only formal, publicly visible governance artifacts and does not reflect
984
o5 informal practices, internal guidance, or unpublished decision-making processes that may substantially shape how Al
086 is used and regulated within institutions. As a result, the dataset should be interpreted as a representation of officially
987 articulated AI governance rather than a complete account of institutional practice.
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20 Anon.

C.1 Phase Il vs. Ill Coverage Comparison

In this section, we provide details on the links retrieved in Phase II vs. III of our iterative link categorization process,
characterizing how human annotators empowered by Google Search in Phase III processed the LLM output results from
Phase II. Specifically, for each institution-category pair, we compare the LLM-retrieved link set L with the human-curated
set H using set-based metrics. We compute precision (|H N L|/|L|) and recall (|(H N L|/|H|), along with the number of
added links (|L \ H|) and deleted links (|H \ L|). We interpret recall as a measure of coverage, indicating whether the

LLM retrieves policy evidence aligned with human judgment.

How good is LLM coverage of institutional Al policy? In Figure 7a, we show recall (human coverage) against precision
(LLM correctness) for all institution-category pairs. The distribution shows that LLM retrieval is strongly recall-oriented:
many cases achieve high recall but only moderate precision, indicating that while the LLM often retrieves at least one
relevant policy link, it frequently includes additional links that are later removed by human annotators. Instances of
low recall correspond to true coverage failures, where the LLM fails to retrieve any human-recognized policy evidence.
To further quantify this behavior at the category level, we summarize LLM coverage using three increasingly strict
definitions: raw coverage (the presence of any LLM-retrieved link), aligned coverage (overlap with human-curated links),
and missed coverage (human-curated links not retrieved by the LLM). The results are shown in Figure 7b. While raw
coverage is consistently high across categories, aligned coverage drops substantially, indicating that apparent LLM
coverage overstates effective policy coverage. This discrepancy is most pronounced in categories involving decentralized
or evolving institutional resources, such as libraries and Al initiatives, where authoritative policy evidence is more
difficult to identify automatically. Taken together, these results suggest that LLMs perform well as a first-stage retrieval
mechanism, successfully surfacing candidate Al policy evidence for most institutions and categories. However, the
observed gap between apparent and aligned coverage underscores the continued necessity of human supervision to
filter non-authoritative links, recover missed policy documents, and ensure that final policy representations accurately

reflect institutional governance.

C.2 Example Links
In Table 4, we provide examples of the types of links retrieved in T1-T7.

Table 4. Examples of Pages by Link Type (T1-T7): This table provides illustrative examples of pages classified under each link
type, chosen to help readers understand how link categories are defined and applied in the search framework.

University Quote Link

T1. University Rules/Policies/Regulations
University of Texas With the increasing integration of artificial intelligence (AI) tools—such as ChatGPT, Copilot, Bard Gemini, Link
at Austin Claude and other generative Al applications known as large language models (LLM), diffusion models, or
generative Al applications—into university activities, it’s essential to use these technologies responsibly. This
guidance, developed collaboratively by the Office of Legal Affairs, University Compliance Services, the Informa-
tion Security Office, and the Business Contracts Office, outlines acceptable practices for utilizing generative
Al tools while safeguarding institutional, personal, and proprietary information. Additional guidance may be
forthcoming as circumstances evolve.

Continued on next page
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University

Quote

Link

Georgia Southern

University

This policy establishes guidance for the responsible, ethical, and transparent use of Artificial Intelligence
(AI) tools at Georgia Southern University (University) including in teaching, learning, assessment, classroom
activities, University community service, research, creative activity, scholarly communication, and administrative
activities, while encouraging innovation, academic freedom, and appropriate autonomy while maintaining
compliance with all data security and privacy regulations. This policy ensures that the University complies with
Board of Regents (BOR) Policy 6.28 Artificial Intelligence in Academic Context; federal, state, and international

laws; and industry standards and best practices.

Link

Carleton College

Al technologies raise novel questions around data security, attribution, and ethics. In many cases, Carleton’s
existing policies still apply to Al but in some cases this technology requires new policies or new interpretations
of existing policies. This page will provide links to policies that apply directly to Al use at Carleton and highlight
any additions and changes as they’re made.

Link

University of South-
ern California

Stanford University

This Research Guide provides information on the use of Generative Al in academic papers and research, and
provides guidance on the ethical use of Generative Al in an academic setting.

T2. Center for Teaching & Learning
Al Meets Education at Stanford (AIMES) is a VPUE effort to catalyze and support critical engagement with

generative Al in Stanford teaching and learning contexts, coordinated by the Center for Teaching and Learning.

Link

Link

Ball State University

Explore a variety of courses designed to meet learners at all levels. Whether you’re looking for introductory
classes or advanced specialization tracks, these courses provide structured, in-depth instruction in Al topics to
build your skills and confidence. A strong grasp of Al terminology is essential for navigating complex concepts
and discussions. This glossary of terms offers definitions and explanations of key terms, serving as a quick
reference to clarify Al language as you advance in your learning.

Link

University of Michi-
gan at Ann Arbor

The release of ChatGPT in late 2022 jump started an ongoing and growing exchange in higher education about
both the promises and significant risks posed by Generative Artificial Intelligence, particularly to the teaching
and learning enterprise. This site is designed to offer links to programs and resources from U-M and beyond to
help you navigate this new landscape. Given how rapidly the GenAlI landscape is shifting, we include links to

sources that offer regular posts and updates on this topic.

Link

University of
Florida

University of
Wyoming

How is Artificial Intelligence (AI) affecting teaching and learning in higher education? Artificial intelligence
(AI) is significantly impacting higher education, revolutionizing various aspects of the learning experience.
Al-powered tools and platforms are transforming how students access educational content, tailor their learning
paths, and receive personalized feedback. Moreover, Al-driven systems can help educators generate educational
content and facilitate research endeavors. While these advancements bring exciting opportunities, it’s essential
to address ethical concerns, data privacy, and ensure Al complements the education process rather than replacing
it entirely. Embracing Al responsibly can lead to a more accessible, efficient, and effective higher education
landscape. Artificial intelligence has introduced significant challenges to academic integrity in education. As Al
becomes more accessible, educators have expressed concerns about students using it to generate answers to
questions on tests and assignments. Rather than reacting in fearful ways to new advances in Al, educators can
focus on potential benefits, such as providing new perspectives on a problem and generating content that can
be analyzed or critiqued. Undoubtedly, faculty need to provide guidelines to students about the appropriate and
inappropriate uses of Al tools. However, faculty can also model and encourage productive and positive uses of
Al and help students see its value.
T3. Al Institute/Initiative/Center/Hub/AI@U

The University of Wyoming’s Al Initiative is a bold, people-centered effort to shape the future of our state,
empowering citizens and communities to thrive in an Al-driven world. By addressing key industries like
agriculture, engineering, energy, tourism, wildlife conservation, and rural healthcare, UW is ensuring that Al
enriches lives and drives sustainable growth. This initiative will enhance the University of Wyoming’s ability to
bring advances in Al to disciplines across the university to advance the state. It will attract investments, build
corporate partnerships, seed entrepreneurship, and equip every student and community to participate in the

global AT transformation, securing a prosperous future for all of Wyoming.

Link

Link

Continued on next page
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University Quote Link
University of Cali- Welcome to the AI Hub - your central resource for artificial intelligence at UC Berkeley. Rooted in Berkeley’s  Link
fornia, Berkeley pioneering spirit, ethos of inclusivity, and culture of excellence, this hub connects our community with essential

Al tools, training, policies, and opportunities. Whether you’re a student, researcher, faculty, or staff member,
you’ll find guidance, collaboration, and innovation here to help navigate the evolving world of Al and amplify
the impact of our collective efforts.
San José State Uni- Welcome to the bold new world of Artificial Intelligence (AI), where groundbreaking innovation meets inclusive ~ Link
versity leadership in the heart of Silicon Valley. At San José State University, we are a place of firsts, pioneering
advancements in Al and empowering the next generation of leaders to shape the future of technology. Our
interdisciplinary programs blend cutting-edge research with hands-on learning, equipping students and profes-
sionals to solve real-world challenges and explore ethical solutions in Al As a proud partner in Silicon Valley’s
ecosystem of global innovation, SJSU connects you to industry leaders, transformational opportunities, and
a vibrant community. Whether you’re forging new paths in Al development, exploring its societal impact or
preparing to lead in this dynamic field we’ll help you unlock your potential and create a future where everyone
can thrive. San José State University leads the way in Al innovation and leadership.
Clark Atlanta Uni- The NSF Expand-Al project led by Clark Atlanta University (CAU) in collaboration with AI4OPT builds an ATHub ~ Link
versity at CAU to transform accessibility to Al jobs, Al research, and the Al ecosystem. AIHub@CAU consists of three
key pillars: (1) a Master Program in Al; (2) a PhD program in Al and (3) research collaborations between CAU
and Georgia Tech. The program is a joint project by the department of mathematical sciences, the department
of Cyber-Physical Systems and the School of Business Administration, making it truly multidisciplinary.
T4. Library/Library Guides
Mercer University Definitions. Artificial Intelligence: Al is typically defined as the ability of a machine to perform cognitive functions ~ Link
we associate with human minds, such as perceiving, reasoning, learning, and problem solving. Examples of
technologies that enable Al to solve complex problems include robotics, computer vision, language, virtual
agents and machine learning.
Chapman Univer- Al Literacy. Use this guide to understand Artificial Intelligence literacy in the context of higher education. What ~ Link
sity is Al Literacy? “Al literacy is the ability to understand, use, and think critically about AI technologies and their
impact on society, ethics, and everyday life” - Lo, L. S. (2025). AI Literacy: A Guide for Academic Libraries.
College & Research Libraries News, 86(3), Article 3. https://doi.org/10.5860/crln.86.3.120
University of Generative Al Information about Generative Al tools and their use in and outside of the classroom. Link
Chicago
Brown University Generative artificial intelligence has already started to have an impact on the way we discover, manage, create, ~Link
and disseminate information. Generative Al tools are in a state of rapid development, and new information about
applications, policies, and social impact is released each day. While every attempt will be made to keep this
guide up to date, please be aware that the information included here is likely to age quickly. This guide includes
context and advice for engaging with generative Artificial Intelligence, and does not represent University policy.
The Library does not endorse any specific Al technologies, and encourages users to be cautious about sharing
personal information when using Al tools.
T5. Academic Integrity/Honor Code
Creighton Univer- Cheating: The deliberate use or attempted use of unauthorized material in an academic exercise, including ~ Link
sity unauthorized collaboration with classmates, or use of unauthorized work created by artificial intelligence.
Wofford College Unauthorized use of generative artificial intelligence to create content that is submitted as one’s own. Link
Marquette Univer- Academic Integrity. A Message for Faculty, Staff, and Students on the use of Large Language Model-Based  Link
sity Chatbots (“generative artificial intelligence”) at Marquette University.
University of New Cheating. Use or attempted use of any academic exercise materials, information, study aids, electronic data, AT ~ Link

Hampshire

tools, assignment/exam surrogate, or other forms of assistance without authorization.
Té. Al Steering Committee/Task Force

Continued on next page
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University

Quote

Link

Texas A&M Univer-
sity

The Artificial Intelligence, Innovative & Emerging Technologies Work Group equips faculty with the knowledge
and resources to explore and integrate cutting-edge technologies into teaching and learning. By curating
and sharing Al-related resources, fostering collaboration, and promoting best practices, the group empowers
educators to leverage emerging technologies to enhance student engagement and academic success across the
A&M System.

Link

Stony Brook Univer-
sity

Library Al Steering Committee. The Stony Brook University Libraries Al Steering Committee plays a central role
in guiding the responsible and strategic integration of artificial intelligence across library services, operations,
and research support. Established to ensure that emerging technologies advance—rather than compromise—the
Libraries’ core values of equity, accessibility, intellectual freedom, and responsible innovation, the committee
evaluates opportunities and risks, recommends best practices, and supports evidence-based decision-making. Its
charge includes reviewing Al initiatives for alignment with institutional priorities, developing ethical guidelines
and principles, promoting staff training and Al literacy, and fostering collaborations with campus partners and
professional communities. Through regular reporting and transparent communication with library leadership,
the AI Steering Committee helps ensure accountability and positions the Libraries to thoughtfully and proactively

navigate the evolving landscape of Al in higher education.

Link

California State Uni-
versity, Long Beach

The purpose of the Al Academic Subcommittee is to explore Al technologies and plan for future implemen-
tations. The subcommittee will make recommendations to the Al Steering Committee to develop guidelines
for campus-wide deployment. To foster a community of Al users on campus, the subcommittee will also make

recommendations for professional development and support for faculty and staff on Al-related topics.

Link

JIowa State Univer-

sity

University of Michi-
gan at Ann Arbor

The 2024 Generative Al Guidance Committee has successfully completed its charge. The subcommittees were
assembled, carried out their tasks diligently, and contributed valuable insights and recommendations. Their
work has laid a strong foundation for our institutional Al strategy. For more information and access to resources,
please visit ai.iastate.edu.
T7. Other Relevant Links

Custom GenAl Services for the U-M Community. U-M is proud to be the first university in the world to provide
a custom suite of generative Al tools to its community. With a focus on equity, accessibility, and privacy, our Al
Services are available to all U-M faculty, staff, and students on the Ann Arbor, Flint, Dearborn, and Michigan
Medicine campuses.

Link

Link

University of
Chicago

Advances in artificial intelligence (AI) and data science are driving breakthroughs - transforming scientific
discovery, accelerating innovation, and changing entire industries. At the University of Chicago, our long-
standing tradition of rigorous inquiry and interdisciplinary collaboration provides a powerful foundation for
tackling large-scale problems in Al and data science and unleashing their greatest potential to improve individual
lives and our world. Faculty and researchers from every division and school at UChicago are at the forefront of
these fields, from developing trustworthy Al systems and foundational frameworks to enabling transformative

advances in areas such as precision medicine and next-generation climate modeling.

Link

Northern  Illinois

University

NIU has introduced Mission, a new feature for undergraduate students, that includes reaching out to you
through Al-assisted text messages and a chatbot to respond to your questions around the clock. Mission will
help answer your questions, and connect you to campus services and information, including: Academic success
- tutors, academic advisors, study skills and more. Financial matters - financial aid, FAFSA and more. Student life
and involvement - clubs, organizations, events and more. Well-being/mental and physical health - counseling
services, nutrition, campus recreation and more. Mission will provide timely, accurate responses via text to your
questions at all times of day, regardless of your location. No logins or app downloads are required.

Link

Case Western Re-

serve University

University Technology offers many services and applications related to Generative Al Below are some Al
technologies available to the campus community. Note: Consumer Al services, especially free ones, often collect
the data you enter into them and use that data in their training models. This can lead to your data being made
available via these Al services. Never put sensitive university information into an Al service if the university
does not have a contract with the Al vendor with proper privacy and security safeguards. The university offers

Al services that will protect your data. Use those services when sensitive information is involved.

Link
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LLM Coverage of Al Policy Categories
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(a) Precision—recall characteristics of LLM-based Al policy link (b) LLM coverage of institutional Al policies under three defini-
retrieval (Phase Il) compared to human-curated links (Phase I11). tions: raw coverage, aligned coverage, and missed coverage.
Each point represents one institution—category pair.

Fig. 7. Comparison of LLM-based and human-curated Al policy link retrieval.

C.3 Prolific Privacy Policy
We provide the Privacy Policy in Figure 8.

D ACAI Rank Changes Under Alternate Weighting Schemes

To assess whether ACAI rankings are artifacts of normative weighting choices, we evaluated four weighting schemes:
an indicator-weighted baseline (A = 2,B = 4,C = 3,D = 2),equal (A = 1,B = 1,C = 1,D = 1), policy-heavy
(A=1,B=1,C=2,D = 2), and teaching-heavy (A = 1, B = 2,C = 1, D = 1), using percentile ranks. We show the results
in Tables 5 and 6.

Table 5. Pairwise Rank Correlations Across Schemes

Scheme 1 Scheme 2 Spearman Pearson
Baseline Equal 0.98 0.98
Baseline Policy-heavy 0.93 0.93
Baseline Teaching-heavy 0.99 0.99
Equal Policy-heavy 0.97 0.97
Equal Teaching-heavy 0.98 0.98
Policy-heavy Teaching-heavy 0.93 0.93

E Details on Comparison to CSRankings

To contextualize institutional Al governance capacity relative to Al research activity, we constructed a reference list of
research-active universities using CSRankings, shown in Figure 9, a widely used, publicly available ranking of computer
science research output. CSRankings aggregates publication counts across major computer science venues and allows

filtering by research area and time period.
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1249 Privacy Policy

1250 Last Updated: December 29, 2025

1251 Platform: Prolific (https://www.prolific.com)

1252 If you have questions about this study, you may contact the research team at redacted@redacted.

1. Purpose of the Task

You are being asked to participate as an annotator in a research project examining how U.S. universities define and respond to
artificial intelligence (AI) in their institutional policies and teaching resources. Your role involves reviewing university web
pages and coding the presence or absence of certain indicators related to Al governance, academic integrity, and instructional
support. The study analyzes publicly available institutional documents and does not evaluate individual instructors, students, or
1257 staff.

1253
1254
1255

1256

1258 This task contributes to a larger academic study focused on understanding patterns in higher education responses to Al
1259 technologies.

1260 2. Data We Collect

1261 During your participation, we collect the following categories of data:

1262 e Prolific ID and Prolific-provided Demographic Data: This data is provided by the Prolific platform to us. Your Prolific
1263 ID will be used only for compensation and quality control, and will be removed as part of the anonymization process before
1264 dataset release.

o Timing Metadata: The start and completion time for your task submission, which helps assess annotation duration and
data quality.
e Annotation Data: Your coded responses and URLs that you provide.

1265
1266
1267
No personal browsing history, IP address, or system-level data is collected by the researchers; such information remains with
Prolific and is governed by their Privacy Policy.
3. How Your Data Is Used
Your coded responses will be:

e De-identified.

o Used for academic research and publication in peer-reviewed journals or conference presentations.

1268
1269
1270
1271
1272

1273
De-identified datasets will be shared publicly for use by other researchers under ethical data-sharing agreements,

e consistent with open science practices.
1273 4. Data Storage and Security

1276 All data collected will be stored securely in encrypted storage (e.g., Google cloud) accessible only to the research team.

1277 e Data will be retained for up to 3 years after study completion and then deleted or permanently anonymized.

1278 e No data will be sold or shared with commercial entities.

e 5. Voluntary Participation and Withdrawal

1280 Your participation is entirely voluntary. You may withdraw from the task at any time prior to submission on Prolific. If you
1281 withdraw before completing the task, no partial data will be used.

1282 6. Risks and Benefits
1283 There are minimal risks associated with participation. You may experience minor fatigue from reviewing university materials.
1284 There are no direct personal benefits, though your work contributes to research improving understanding of Al use in
1285 education policy.
1286 7. Confidentiality

1287 Your responses will never be linked to your name or contact information. Any publications or presentations resulting from this
Lo research will contain only anonymous findings.
120 8. Consent

By completing the task on Prolific, you confirm that you:

ijz(j o Are 18 years of age or older.

. o Understand the nature and purpose of this research.
1292 o Consent to your anonymized responses being used for research and publication purposes.

1293

1294
1295 Fig. 8. Privacy Policy Provided to Human Annotators Recruited via the Prolific Platform.

129

1297
1298 We first navigated to csrankings.org and restricted the ranking to Al-relevant research areas only, enabling the

1299 categories of Artificial Intelligence, Computer Vision, Machine Learning, Natural Language Processing, and The Web
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Table 6. Maximum Absolute Rank Change Statistics

Baseline Equal Policy-heavy Teaching-heavy

Mean 16.28 17.37 16.96 16.54
Median (50%) 14.50 17.00 15.50 13.50
75% 22.50 23.50 22.50 21.75
Max 46.00 46.00 43.50 45.00

CSRankings: Computer Science Rankings

CSRankings is a metrics-based ranking of top computer science institutions based on faculty publications at selective conferences.

=5 USA - 2022 1 2025 O

All Areas [off | on] Institution Count Faculty
1 » Carnegie Mellon University a = s 34.3 92

» Artificial intelligence R o N
» Computer vision 2 » Univ. of lllinois at Urbana-Champaign & &5 4y 27.3 62
» Machine learning 3 > University of Maryland - College Park # i 209 53
» Natural language processing 4 » Univ. of California - San Diego = i 204 73
» The Web & information retrieval 5 » Georgia Institute of Technology & &= i 18.9 76
6 » Cornell University # == | 16.9 63
» C 0 7 » Univ. of California - Berkeley # == | 16.5 64
»C O 8 P Stanford University & = i 16.2 45
> (m] 9 » University of Michigan & &= iy 14.4 51
> 0 10 » M; husetts Institute of wm 143 65
: ‘ S 11 Johns Hopkins University & =5 il 138 49
> o 12 » New York University & & i 134 56
> 0 12 P Univ. of California - Los Angeles & il 134 30
>0 [m] 14 » University of Texas at Austin a &5 iy 133 4
» O [m] 15 » University of Southern California & &5 il 13.0 47
> 0 16 » University of Massachusetts Amherst =34y 12.6 39
> o 16 B University of Washington & s i 126 43
18 P Northeastern University a = il 109 44
» Algorithms & complexity (] 19 P University of lllinois at Chicago & i 10.7 23
» Cryptography =] 20 P University of Pennsylvania & il 106 37

Fig. 9. CSRankings Website: Used to approximate research output, https://csrankings.org.

& Information Retrieval, while disabling all other areas. This filtering step was intended to approximate institutional
engagement with Al-related research rather than overall computer science output.

We then restricted the publication window to 2022-2025, corresponding to the period following the public release of
large-scale generative Al systems (i.e., ChatGPT) and the following rapid expansion of Al use in educational contexts.
This temporal filter was chosen to reflect contemporary Al research activity during the period in which universities
began articulating institutional responses to generative AL

The resulting ranked list of universities was used as a reference set for identifying institutions with substantial
recent Al research activity. Importantly, this list was not treated as a measure of governance quality or institutional
responsibility. Rather, it served as a comparative baseline to examine whether Al research intensity correlates with
publicly articulated AI governance capacity.

This procedure relies exclusively on publicly accessible filters and settings within CSRankings and is fully reproducible.
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(a) Exclude unranked CSRankings 4;; results also visualized in Figure 3

Group n Pearson Spearman Kendallz Spearman Clj,,, Spearman Clygp
South 9 0.51 0.65 0.42 -0.05 0.93
Midwest 10 0.26 0.38 0.27 -0.35 0.85
West 7 0.25 0.18 0.24 -0.76 1.00
Northeast 9 0.05 0.09 -0.03 -0.72 0.66
R1 29 0.14 0.12 0.08 -0.25 0.49
R2 6 -0.31 -0.32 -0.28 -1.00 0.89
Public Research 18 0.05 -0.05 -0.06 -0.65 0.54
Private Research 17 0.20 0.22 0.17 -0.32 0.61
Medium 9 0.32 0.27 0.17 -0.62 0.83
Large 21 0.08 0.02 0.00 -0.49 0.50

(b) Include unranked CSRankings 47 by collapsing into bottom rank

Group n Pearson Spearman Kendallz Spearman Cls,, Spearman Clygp
South 21 0.63 0.70 0.55 0.32 0.87
Midwest 20 0.49 0.54 0.42 0.14 0.80
Northeast 20 0.35 0.40 0.29 -0.04 0.73
West 18 0.35 0.34 0.26 -0.18 0.70
R1 33 0.24 0.24 0.16 -0.11 0.55
R2 30 0.00 0.11 0.08 -0.27 0.47
Public Research 33 0.44 0.47 0.32 0.16 0.71
Private Research 30 0.35 0.41 0.32 0.06 0.71
Small 27 -0.17 -0.04 -0.02 -0.41 0.43
Medium 25 0.45 0.49 0.37 0.09 0.78
Large 27 0.26 0.25 0.16 -0.18 0.61

Table 7. Agreement between ACAI and CSRankingsar across institutional groups with n > 5. The table reports Pearson, Spearman,
and Kendall correlations. Spearman confidence intervals are based on 1000 bootstrap resamples.

F Extended Related Work
F.1 Institutional & Socio-Technical Systems Theory, and Algorithmic Accountability

As Winner argued, “What matters is not technology itself, but the social or economic system in which it is embedded”
[57]. This position, described as social determination theory, offers a corrective to naive technological determinism:
the assumption that technology evolves according to its own internal logic and subsequently shapes society in a
one-directional way. Technological and institutional capacities do not evolve independently, instead co-producing and
mutually constructing each other [23]. This aligns with the argument of Selbst et al. [47], who warn that abstracting
away from social context obscures the structural forces that shape fairness itself.

Algorithmic accountability is usually determined via algorithmic impact assessments, an auditing mechanism to
judge how an algorithm is causing harm. Metcalf et al. [33] highlights the distinctiveness of algorithmic systems, noting
that there is a heightened risk with misunderstanding the inner workings of algorithmic systems, and therefore being
unable to legislate their use or development effectively. Selbst [46] also note this gap between the inner workings of
a computational system and effective governance, demonstrating cases of “algorithmic harm where existing liability
regimes fail to hold the creators of the harm to account, specifically because of a lack of knowledge about the development
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process.” Notably, Ananny and Crawford [5] criticize the transparency ideal in algorithmic assessments, noting that

« »
transparency alone cannot create accountable systems.

F.2 Al Governance Models

Recently, there have been calls for attention to Al governance [39, 40, 50]. Prior Al governance models formulate the
relationship between governance and computation as unidirectional capacity flows, as shown in Table 8. Across this
literature, governance and computation are treated as sequential processes, where one directs, regulates, or reacts to the
other. These frameworks have advanced the field’s understanding of risk and ethics, but they remain largely reactive
and linear, conceptualizing governance as either a top-down constraint or a downstream response to technical innovation.

Existing models recognize the importance of institutional capacity: The UN System Survey of Institutional Models
[52] emphasizes “capacity-building” but defines it primarily as the technical training of scientists and regulators; The
Responsible AI Systems Roadmap [20] focuses on the role of scientists in shaping policy. While models recognize the
importance of institutional development, they largely equate capacity with technical skill or regulatory compliance

rather than with civic or educational infrastructure.

Model Primary Focus Capacity Flow Scope
The Hourglass Model of Or- Focused on Al ethics, risk mitigation; or- Governance —  EU/Global
ganizational Al Governance ganized into environmental, organizational, Computational
[35] and Al system layers with some feedback

mechanisms (i.e. computational — gover-

nance).
NIST AI Risk Management Focused on identifying Al risks, which gov- Computational =~ USA
Framework [37] ernance Maps, Measures, and Manages. — Governance
Entity-Based Regulation Focused on transparency and regulating Governance — USA
Framework [7] “the large business entities developing the Computational

most powerful AI models and systems” with

emphasis on preemptive risk regulation.
Three-Layered Framework Focused on risk, aims to fix market failures Computational Global
[60] using a toolbox of regulatory tools from the — Governance

three layers: market-invigorating strategies,

value-directed rules, and procedural con-

trols.
UN System Survey of Insti- Focused on ethics and risk; highlights ‘fna- Computational =~ UN/Global
tutional Models [52] tional] capacity-building [that] can support — Governance

Al development that is grounded in fair-

ness, gender equality, reliability, safety, in-

terpretability and accountability.”
Responsible Al Systems Focused onrisk, highly dependent ona com- Computational UN/Global
Roadmap [20] mittee of scientists to shape policy. — Governance
AlEcological Education Pol- Focused on education; organized into 3 di- Computational =~ Hong
icy Framework [10] mensions of educational support: pedagogi- — Governance Kong

cal, ethical, and operational.

Table 8. Existing governance frameworks recognize that there is both computational capacity and governance capacity.
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Governance Capacity — Computational Capacity. The Hourglass Model of Organizational AI Governance [35]

represents an ethics-first pipeline in which governance capacity flows toward computation. Ethical principles and
organizational oversight mechanisms are translated into engineering practice. While there are feedback mechanisms
for communication, the model largely presumes institutions can directly steer technical behavior. A similar directional
logic appears in the Entity-Based Regulation Framework [7], which centers regulatory oversight of large corporate
actors, confined to the level of enforcement and transparency rather than broader institutional design. Both frameworks

view governance as an initiating force, with the Hourglass model supporting a limited feedback mechanism.

Computational Capacity — Governance Capacity. Other frameworks reverse this flow, positioning technical

development as the driver of governance. The NIST Al Risk Management Framework [37] sequences accountability as

mapping, measuring, and managing risk and emphasizes flexibility, voluntarism, and scalability across sectors:

“The Framework is intended to be voluntary, rights-preserving, non-sector-specific, and use-case agnostic,
providing flexibility to organizations of all sizes and in all sectors and throughout society to implement the

approaches in the Framework.”

The Three-Layered Framework [60] follows a similar pipeline but extends it globally, envisioning governance as
a set of layered responses to computational markets — drawing from the toolbox categories of market-invigorating
strategies, value-directed rules, and procedural controls. The UN System Survey of Institutional Models [52] emphasizes
“capacity-building” but defines it primarily as the technical training of scientists and regulators.The Responsible Al
Systems Roadmap [20] focuses on the role of scientists in shaping policy. These models recognize the importance of
institutional development yet largely equate capacity with technical skill or regulatory compliance rather than with

civic or educational infrastructure.

F.3 Institutional Capacity

Institutional Capacity extends beyond Governance Capacity to include the civic, educational, industrial, and govern-
mental infrastructures that make computational work socially legitimate and accountable. It encompasses the systems
and organizations that translate technical advancement into into legal systems, economic sectors, government, defense,

and culture, and therefore requires a wide and interdisciplinary range of expertise:

“Questions about the impact of AI on American society and culture are fundamentally rooted in such
humanities fields as ethics, law, history, philosophy, anthropology, sociology, media studies, and cultural

studies.” —National Endowment for the Humanities [36]

While computational capacity has been extensively benchmarked, its rapid expansion has outpaced the institutional

systems needed for accountability.

F.4 The Translation Workforce

The translation workforce is professionals who bridge technical and institutional domains. Algorithmic action is
inherently situated — systems can have unintended outcomes when deployed in real social and organizational contexts
[24, 49]. Effective governance therefore requires people and processes capable of translating between computational
reasoning and institutional judgment.

The translation workforce goes beyond Al literacy (understanding how AI operates) or ethics (identifying harms).
It encompasses the practical work of institutional integration: drafting regulations, designing oversight mechanisms,
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adjudicating disputes, negotiating standards, and explaining algorithmic decisions to diverse stakeholders, and/or
exercising judgment about when Al implementation is not appropriate. Engineers, policymakers, educators, artists,

cultural critics, and legal professionals all participate in this interpretive process.

G A Case Study on Al Detection Tools

Concerns about plagiarism and unauthorized use of generative Al tools are often treated as isolated classroom manage-
ment issues. In reality, they reveal deeper failures of governance capacity - specifically, the lack of clear institutional
policies, interpretive frameworks, and governance mechanisms capable of addressing Al use in equitable, accountable,
and pedagogically meaningful ways. Universities have frequently responded to the rise of generative tools with restric-
tive policies or punitive enforcement regimes, but these approaches are often built on vague or inconsistent definitions
of permissible use. The result is widespread uncertainty among both students and faculty [55], inconsistent application
of standards, and in some cases, false accusations of academic misconduct.

While it is true that many faculty are concerned with academic dishonesty with the rise of generative Al, it is also
the case that for at least some faculty, the concern goes beyond the (dis)honesty question and is rooted in a worry that
students will fail to learn; as the AAUP Report puts it:

“The distinction between honesty and failure to learn is critical because it highlights one of the core goals of
higher education: to develop a well-informed and thoughtful citizenry. This finding suggests that there is
a need for higher education to refocus on the relational aspects of education and learning, as opposed to

punitive measures...” — Paris et al. [41]

Such outcomes erode trust, undermine institutional legitimacy, and highlight the urgent need for governance
structures that are transparent, participatory, and aligned with civic values.

The stakes of false accusations extend far beyond individual classroom incidents. Let us consider Blackstone’s Ratio
[8]: “It is better that ten guilty persons escape than one innocent suffer” This principle remains instructive in the context
of Al governance. Institutions that tolerate high rates of false positives in Al detection — for example, by punishing
students based on unreliable systems - risk delegitimizing their authority and weakening the educational contract
itself. Even a 1% false positive rate can result in thousands of wrongful accusations across large institutions, eroding
trust in both faculty and administrative oversight, as illustrated in Figure 2. Protecting the innocent is foundational to
sustaining the legitimacy of the institution as a whole.

Moreover, reliance on flawed detection technologies [59] introduces new forms of procedural injustice. Many
detection systems disproportionately misclassify the work of multilingual students or those who write in nonstandard
styles, compounding existing inequities [9, 27]. At the same time, the usefulness in certain contexts and ubiquity of
generative Al virtually guarantee its continued presence in certain academic and professional contexts [6]. Attempts to
suppress use via detection technologies are both impractical and counterproductive. Instead, educators should focus on
equipping students with the critical skills needed to evaluate, contextualize, and responsibly integrate (or not integrate)
Al-generated content into their work.

These challenges highlight that preventing misuse is not simply a question of enforcement but one of governance
design. Effective institutional responses will require clear and consistently applied definitions of acceptable AI use,
transparent policies with built-in safeguards such as appeal and review mechanisms, and curriculum that teaches

students how to engage with generative Al ethically and productively. By shifting from a reactive, punitive stance to
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Al Detection Tool Thousands of Misclassifications at Scale in
False Positive Rate N the University Setting

Leads to:

» Thousands of
false accusations

« Thousands of
careers
jeopardized

» Eroded
institutional trust

» Weakened Al
leadership

1%

Fig. 10. False Positive Rate of 1%: As an example, a false positive rate of only 1% [17, 51] indicates that 1 in every 100 cases will
be flagged for cheating incorrectly. It falls on the instructor to evaluate use - faculty who are ill-equip to assess state-of-the-art
Al systems. At scale in a university setting, for every 100,000 submissions, 1000 false accusations could occur, jeopardizing student
careers and significantly de-legitimizing educational institutions.

a proactive governance model, universities can both uphold academic integrity and prepare students for meaningful
participation in society increasingly pervaded by Al.

Finally, uneven access to generative tools and inconsistent usage policies can exacerbate existing inequities. Students
with more resources, prior exposure, or permissive faculty gain advantages, while others face sanctions or are discouraged
from engaging with technologies that are increasingly integral to professional and civic life. Limit and audit the use of AI-
detection systems, which often produce false positives and disproportionately penalize multilingual and nontraditional
writers. Any detection-based process must include transparent documentation, human review, and accessible appeals.
Reliance on flawed detection software shows computational capacity outpacing institutional safeguards — a breakdown

in procedural accountability.

H Public Website

To support transparency, inspection, and reuse of the ACAI-US79 audit, we provide a public, interactive website at
acai-us79.org. The site is designed to make both the audit results and the audit instrument accessible beyond the paper,
enabling readers to explore institutional Al governance capacity and to trace aggregate scores back to the underlying
publicly available materials.

As shown in Figure 4, the primary interface is an interactive map-based visualization of the 79 U.S. universities
included in the audit. Each institution is represented as a clickable marker, and a synchronized sidebar lists universities
ranked by ACALI score. Users can filter institutions by research activity, institutional type, geographic region, and
student size, and can select either a map marker or a list entry to reveal institution-specific details. For each university,
the interface displays its ACAI score alongside direct links to the institutional policies, teaching resources, governance
committees, and academic integrity materials reviewed during the audit. This design explicitly supports traceability,
allowing users to inspect how scores are grounded in publicly legible governance artifacts rather than treating the
index as an opaque ranking.
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The website also includes a self-scoring interface for institutions not included in the ACAI-US79 dataset. This tool
implements the same annotation schema and scoring criteria used in the audit, enabling users to assess their own
institution using publicly available materials under comparable constraints. Self-scoring results are returned solely for
informational and reflective purposes and are not incorporated into the released dataset.

The application is implemented in React with TypeScript, using react-simple-maps for geographic visualization
and Material-UI for interface components. Institutional metadata—including location coordinates, research classification,
institutional type, and associated governance resources—is stored in a structured JSON format derived from the original
audit datasets. The interface supports interactive filtering, zooming, and state-level annotations to facilitate exploration
and comparison across institutions.

Overall, the website is designed to emphasize interpretability and accountability. ACAI scores reflect the public
legibility of institutional governance artifacts at the time of review and should not be interpreted as measures of internal
practice or intent. By making both the audit results and the audit instrument publicly accessible, the site supports
replication, critique, and institutional self-reflection, and positions ACAI as an auditable, contestable infrastructure

rather than a static evaluation.

I Details on LLM-Driven Audit Study

Outputs failing schema or completeness checks were automatically retried until a valid response was produced.

Figure 11 shows the prompt used for the study.
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Evaluating whether a wuniversity meets specific criteria based strictly on the provided
institutional links.

University: {UNIVERSITY}

Approved sources (you must not use any external sites, but you should explore sublinks
from these sites):
{LINK_LIST}

Evaluation criteria:
{CRITERIA_LIST}

Scoring scale (select exactly one per criterion):

A. Present/Yes — A clear statement directly addressing the item is found on an institutional
page within 5 minutes.

B. Partial/Implicit/Somewhat — The item is mentioned or implied, but key details are missing.

C. Absent/No — You reasonably searched the allowed sources and did not find relevant content.

D. Unclear or Took Longer Than 5 Minutes — Navigation difficulty, vague language, or time limits
prevented a confident decision.

E. Conflicting Information — Different institutional sources provide contradictory guidance for
the same item.

Output requirements:

- Return VALID JSON ONLY.

- No markdown, no commentary.

- Return an ARRAY with one object per criterion.
- Every criterion MUST appear exactly once.

Schema:
[
{
"criterion": "A1",
"score": "A|B|C|D|E",
"urls": ["https://...", "https://..."]
3
]

Fig. 11. Prompt used in the LLM robustness study. The figure shows the full evaluation prompt provided to the language model,
including source restrictions, scoring criteria, and the required JSON output schema, mirroring the instructions given to human
annotators in the ACAI audit.
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