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Abstract

Abnormal prosody is a prominent component of the speech
changes in schizophrenia spectrum disorders (SSD). We inves-
tigated whether prosodic information alone can distinguish SSD
from healthy control (HC) speech through parallel human per-
ception and machine learning experiments. Speech samples
from 25 participants (15 SSD, 10 HC) underwent adaptive low-
pass filtering to preserve prosodic contours while removing se-
mantic content. Thirty-three raters with varying clinical exper-
tise evaluated 50 filtered stimuli on a 4-point Likert scale. Ag-
gregate ratings achieved 80.0% accuracy (AUC=0.820). Unex-
pectedly, clinical expertise showed no relationship with classi-
fication accuracy (r=-0.17, p=0.369). Machine learning classi-
fiers trained on 108 acoustic features from 251 participants (162
HC, 89 SSD) achieved comparable performance, with Logis-
tic Regression reaching 80.0% accuracy (AUC=0.805). Both
approaches demonstrated that prosodic abnormalities in SSD
are perceptually salient and computationally detectable inde-
pendent of semantic content. These findings support prosody-
based markers as potential language-independent biomarkers
for screening applications, while highlighting the comparable
performance of human perception and automated classification
in utilizing suprasegmental speech information.

Index Terms: speech recognition, speech biomarker, clinical
speech

1. Introduction

Speech abnormalities have long been recognized as clinically
significant features of schizophrenia spectrum disorders (SSD),
encompassing both content-level disorganization and supraseg-
mental characteristics [1, 2]. While much research has focused
on linguistic and semantic aspects of speech in psychosis [3],
prosodic features — including fundamental frequency (FO) pat-
terns, rhythm, and intonation — represent a relatively understud-
ied dimension that may carry diagnostic information.

Previous studies have documented that individuals with
SSD often exhibit atypical prosodic patterns, commonly de-
scribed as “flat affect” or monotonous speech [4, 5]. These ob-
servations raise a fundamental question: can prosodic informa-
tion alone, isolated from semantic content, enable detection of
psychosis? This question has both theoretical and practical im-
plications. Theoretically, it addresses whether prosodic abnor-
malities in SSD are sufficiently distinctive to be perceptible in-
dependent of other speech characteristics. Practically, prosody-
based markers could potentially serve as language-independent
biomarkers for screening or monitoring purposes, with the pos-
sibility of expanding to other clinical conditions [6].

To investigate this question, we conducted two parallel ex-
periments using speech samples from individuals with SSD and

healthy controls. Following the methodology outlined in recent
work on dialect classification [7], we applied adaptive low-pass
filtering to isolate prosodic information while removing intel-
ligible semantic content. This processing preserves pitch con-
tours and rhythmic patterns while rendering the speech unintel-
ligible — creating stimuli that contain prosodic information but
lack lexical content. Our study addresses three specific research
questions:

1. Can human raters distinguish SSD from health controls’
(HC) speech based solely on prosodic information, and does
clinical expertise influence this ability?

2. Can machine learning classifiers trained on acoustic features

achieve accurate SSD/HC discrimination?

3. How do human perception and automated classification com-

pare in utilizing prosodic information for psychosis detec-
tion?

By comparing human perception with machine learning ap-
proaches, we aim to understand both the perceptual salience of
prosodic abnormalities in psychosis and the potential for devel-
oping automated assessment tools.

2. Previous Studies

Research on speech in schizophrenia has identified abnormali-
ties across multiple dimensions. At the semantic and discourse
level, studies have documented thought disorder, tangentiality,
and reduced coherence [8, 9, 10, 11]. At the acoustic-prosodic
level, individuals with SSD often exhibit reduced pitch variabil-
ity, abnormal speech rate, and altered rhythm patterns [4, 5].
Compton et al., [S] demonstrated computationally-derived ev-
idence of monotone speech, with reduced FO variability cor-
relating with clinical ratings of flat affect. Parola et al., [4]
conducted a cross-linguistic meta-analysis showing that voice
patterns can serve as markers of schizophrenia across diverse
languages and populations. Recent work has also examined
harmonic-to-noise ratio (HNR) and other voice quality mea-
sures as potential objective biomarkers of negative symptoms
[12].

Low-pass filtering has been successfully employed to iso-
late prosodic information while obscuring articulatory detail
[13, 14]. Parsons et al. [7] demonstrated that adaptive fil-
tering methods, where cutoff frequencies are dynamically ad-
justed based on speaker-specific FO characteristics, effectively
preserve pitch contours while removing formant structure nec-
essary for phoneme identification. While clinicians routinely
observe and document prosodic changes in psychiatric assess-
ment (e.g., contributing to “flat vs. labile vs. expansive affect”,
“monotonous vs. stilted speech”), systematic studies of human
perception of these features and their relationship to diagnostic
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impression remain limited [15]. Research on affective prosody
has primarily focused on patients’ ability to perceive emotional
prosody [16, 17], rather than on how listeners perceive prosodic
abnormalities in patients’ speech. Studies examining clinical
expertise suggest that trained raters [18] may be more sensitive
to subtle speech abnormalities, though the extent to which clin-
ical experience enhances detection of prosodic markers specifi-
cally remains unclear.

Automated speech analysis has increasingly been applied to
psychiatric assessment [19], with recent studies demonstrating
that machine learning classifiers can distinguish SSD from HC
speech with substantial accuracy [20, 21]. However, most ex-
isting work analyzes complete speech samples containing both
prosodic and semantic information. Studies specifically ex-
amining prosody-only classification in clinical populations are
rare. Our previous work [22] highlighted the importance of ro-
bust feature extraction and the challenges of cross-toolkit con-
sistency in clinical applications — a concern particularly rele-
vant when developing automated assessment tools for clinical
deployment.

3. Methods
3.1. Datasets

Our study combines data from two internal datasets with dif-
ferent collection protocols (“ACES” and “Remora”). All par-
ticipants completed open-ended speech tasks designed to elicit
naturalistic, spontaneous-style speech. General symptom sever-
ity was assessed with the Brief Psychiatry Rating Scale (BPRS)
[23] and negative symptoms were assessed with the Scale for
the Assessment of Negative Symptoms (SANS) [24]. From
these combined datasets, 25 participants were randomly se-
lected for the human perception experiment, while all available
participants (N=251) were used for machine learning classifica-
tion. For the human perception experiment, we stratified partic-
ipants based on BPRS total scores into severity categories, with
participant characteristics shown in Table 1: mild (18-31), mod-
erate (20-37), and severe (33-67). All study procedures were
approved by the Institutional Review Board, and all participants
provided informed consent.

3.2. Stimulus preparation

To isolate prosodic information, we applied adaptive low-pass
filtering following [7]. From each recording, we extracted the
first and last 15 seconds of speech excluding silence. For each
segment, FO was estimated using Librosa [25] with a search
range of 50-400 Hz. The cutoff frequency was computed using
cutoff = 420.2 x (1 — e~ 0124%I0) ‘hounded between 200-
500 Hz, ensuring the filter preserves FO and lower harmonics
while removing formant structure. A Sth-order Butterworth fil-
ter was applied, and the filtered audio was normalized to 80%
of maximum amplitude.

3.3. Human Perception Experiment

Each of the 25 pairs of low-pass filtered samples were reviewed
by 33 raters who are blinded to the diagnosis of the participant.
Rater had varying clinical experience working with individuals
with psychosis, categorized into five expertise levels from min-
imal (n=7) to extensively experienced (n=2, 10+ years). Raters
also reported their experience with prosody and phonetics re-
search (minimal: n=12, some: n=14, moderate: n=5, extensive:
n=1). Raters were instructed that audio files had been processed

to remove semantic content while preserving prosody. For each
of the 25 participants, raters listened to two filtered audio seg-
ments (first and last 15 seconds) and provided a single rating on
a4-point Likert scale: 1 (Very Unlikely to have SSD), 2 (Some-
what Unlikely), 3 (Somewhat Likely), 4 (Very Likely to have
SSD). Raters based judgments solely on prosodic features in-
cluding rhythm, intonation, and speech patterns. Stimuli were
randomized, and raters could replay segments as needed.

3.4. Machine Learning Classification

Acoustic features were extracted from both datasets using
OpenSMILE’s eGeMAPS configuration, which provides a stan-
dardized set of 88 acoustic parameters including FO statistics
(mean, range, percentiles), intensity measures, spectral fea-
tures, voice quality metrics (HNR, jitter, shimmer), and mel-
frequency cepstral coefficients (MFCCs). Timing features in-
cluding pause statistics and speech rate measures were extracted
separately, yielding an additional 107 temporal parameters. All
features were extracted from the low-pass filtered audio at 16
kHz sampling rate with 60ms frame size and 10ms hop length to
match the human perception stimuli processing. Features were
aggregated at the participant level by averaging across record-
ings. We removed features with more than 50% zero or missing
values, reducing the feature set from 194 to 108 features (20
timing features, 88 acoustic features), and imputed remaining
missing values using median imputation.

To identify the most informative features, we compared
eight feature reduction strategies: no reduction (baseline),
variance threshold (removing features with variance < 0.01),
correlation-based removal (eliminating features with > 0.95
correlation), univariate selection using F-statistic (top 50 fea-
tures), mutual information-based selection (top 50), recursive
feature elimination (RFE) with Random Forest (top 50), Ran-
dom Forest importance ranking (top 50), and principal com-
ponent analysis (PCA, 50 components). For each strategy, we
evaluated four classifiers: Logistic Regression with L2 regu-
larization (C=1.0, max 1000 iterations), Random Forest (100
estimators, max depth=None), Gradient Boosting (100 estima-
tors, learning rate=0.1), and Support Vector Machine with RBF
kernel (C=1.0, gamma="‘scale’).

We employed participant-level group-based splitting using
GroupShuffleSplit with a 70-30 train-test split, ensuring that all
recordings across multiple tasks from a given participant ap-
peared only in either the training or test set to prevent data
leakage. Features were standardized using StandardScaler fit on
training data and applied to test data. Model performance was
evaluated using accuracy, Fl-score, and area under the ROC
curve (AUC). All experiments used a fixed random seed (42)
for reproducibility.

4. Result

4.1. Human Perception Experiment Results

To evaluate raters’ ability to distinguish SSD from HC based
on prosodic features, we computed mean ratings across all 33
raters for each of the 25 sets of stimuli. Using an optimal thresh-
old of 2.5 (determined by F1 score maximization), the aggre-
gate ratings achieved 80.0% accuracy (20/25 correct classifica-
tions). Table 2 summarizes the classification performance and
group comparison statistics. The classifier demonstrated high
specificity (90.0%, 9/10 HC correctly identified) and moderate
sensitivity (73.3%, 11/15 SSD correctly identified), with pos-
itive predictive value of 91.7% and negative predictive value
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Table 1: Demographic and Clinical Characteristics of Participants

HC SSD-Mild SSD-Moderate SSD-Severe p-value All SSD
(n=10) (n=6) (n=6) (n=3) (n=15)
Age,y 30.3(54) 239(@3.7) 25.8 (7.6) 26.9 (0.9) 0.150 25.2(5.2)
Female, n (%) 7 (70%) 1 (17%) 2 (33%) 0 (0%) - 3 (20%)
Race, n (%)
White 4 (40%) 2 (33%) 1 (17%) 0 (0%) - 3 (20%)
Black 3 (30%) 2 (33%) 3 (50%) 0 (0%) - 5 (33%)
Asian 0 (0%) 1 (17%) 1 (17%) 0 (0%) - 2 (13%)
Multiple 3 (30%) 1 (17%) 0 (0%) 1 (33%) - 2 (13%)
Education, y 172 (24) 14.3(1.6) 11.8 (2.2) 12.7 (2.1) 0.001 13.0 (2.2)
Clinical Characteristics
BPRS Total - 25.2(5.1) 31.7 (6.2) 45.7 (18.6) 0.026  31.9(11.5)
SANS Total - 18.2 (11.1) 28.3(13.4) 16.3 (8.1) 0.253 21.9 (12.2)

Results of ANOVA comparing groups are shown in the p-value column. BPRS = Brief Psychiatric Rating Scale; SANS = Scale for the Assessment of
Negative Symptoms.

Table 2: Human perception classification performance

Metric Value
Accuracy 80.0% (20/25)
Sensitivity 73.3% (11/15)
Specificity 90.0% (9/10)
Positive Predictive Value 91.7%
Negative Predictive Value 69.2%

AUC-ROC 0.820 (95% CI: 0.657-0.984)

Group Comparison
SSD Mean Rating
HC Mean Rating 2.03 (SD =0.56)
Group Difference t(23) =3.15, p = 0.0045
Cohen’s d 1.31

2.79 (SD = 0.61)

of 69.2%. Receiver operating characteristic analysis yielded
an AUC of 0.820 (95% CI: 0.657-0.984), indicating good dis-
criminative ability. Mean ratings differed significantly between
groups: SSD participants received higher ratings (M = 2.79, SD
= 0.61) compared to HC participants (M = 2.03, SD = 0.56),
t(23) = 3.15, p = 0.0045, Cohen’s d = 1.31. This large ef-
fect size indicates that prosodic features provided substantial
information for group discrimination. Individual rater accuracy
ranged from 44.0% to 80.0% (M = 66.2%, Mdn = 68.0%, SD =
8.7%). Three raters achieved the maximum accuracy of 80.0%,
correctly classifying 20 of 25 participants. Inter-rater agree-
ment was moderate, with mean pairwise Spearman correlation
of r = 0.39 (Mdn = 0.43, range: -0.43 to 0.80), suggesting that
while raters generally agreed on which prosodic patterns indi-
cated SSD, there was considerable individual variation in per-
ceptual strategies.

To test whether clinical or research expertise influenced
classification accuracy, we conducted one-way ANOVAs com-
paring mean accuracy across experience levels. For clinical ex-
perience, there was no significant difference in accuracy across
the five expertise levels, F(4, 28) = 1.39, p = 0.263, 772 =
0.17. Mean accuracy by clinical experience level ranged from
60.0% (extensive experience) to 71.4% (some experience), with
no monotonic relationship between expertise and performance.
Similarly, research experience in prosody and phonetics showed
no significant effect on accuracy, F(3, 28) =0.11, p = 0.957, 173

= 0.01. Spearman correlations confirmed these null findings:
clinical experience level showed a weak negative correlation
with accuracy (r = -0.17, p = 0.369), while research experience
showed essentially no relationship (r = 0.01, p = 0.973). No-
tably, the three raters achieving maximum accuracy (80%) had
relatively low expertise levels: two had “some” clinical experi-
ence with “minimal” research experience, and one had “mini-
mal” clinical experience with “some” research experience.
Examining individual samples revealed substantial varia-
tion in perceived prosodic abnormality. Two SSD participants
received near-unanimous classification as SSD, with mean rat-
ings of 3.84 and 3.74 respectively, and 100% of raters assigning
them ratings of 3 or 4. Conversely, one HC participant was
unanimously classified as HC, receiving a mean rating of 1.58
with zero ratings of 4 (“Very Likely SSD”). Four SSD partici-
pants were consistently misclassified as HC, with mean ratings
below 2.5. Interestingly, three of these four were classified as
moderate severity, suggesting that prosodic abnormalities may
not directly track overall symptom severity. Indeed, when strat-
ifying SSD participants by severity, we found no significant re-
lationship between BPRS-based severity categories and mean
prosodic ratings, F(2, 12) = 1.21, p = 0.33. Mild SSD cases re-
ceived numerically higher ratings (M = 3.02, SD = 0.44) than
moderate (M =2.67, SD =0.89) or severe cases M =2.51,SD =
0.42), though this trend did not reach significance in our sample.
Both BPRS and SANS total scores showed no correlation with
prosody ratings (BPRS: r =-0.027, p = 0.925; SANS: r=0.239,
p = 0.390). One HC participant was misclassified as SSD, re-
ceiving a mean rating of 3.23. This false positive case merits
further investigation, as it suggests that prosodic patterns asso-
ciated with SSD may occasionally occur in healthy individuals,
or that other factors (e.g., speaking style, affective state during
recording) can produce similar acoustic-prosodic profiles.

4.2. Machine Learning Classification Results

The machine learning classification analysis revealed that
prosodic features extracted from low-pass filtered speech can
distinguish SSD from HC participants with moderate to good
accuracy. Table 3 presents the performance of selected model
configurations.

The best performing model used Logistic Regression with
correlation-based feature reduction, achieving 80.0% accuracy
(F1=0.696, AUC=0.805) on the held-out test set. Using all 108
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Table 3: Performance comparison of selected machine learning
models for SSD vs. HC classification using prosodic features.
LR: Logistic Regression, RF: Random Forest, Acc.: Accuracy,
N Feat.: Number of features, All: No feature reduction, Corr:
Correlation-based feature removal, PCA-50: PCA with 50 com-
ponents, Uni-50: Univariate selection with 50 features. Best
performance shown in bold.

Model Acc. F1 AUC N Feat.
LR (Al 80.00 69.57 80.53 108
LR (PCA-50) 78.57 68.09 78.12 50
LR (Corr) 77.14  66.67 80.36 94
LR (Uni-50) 7571 6047 75.37 50
RF (PCA-50) 7429 6250 72.35 50
SVM (PCA-50) 74.29 62.50 74.29 50
SVM (All) 72.86 61.22 68.73 108
GB (PCA-50) 72.86 59.57 68.48 50

features without reduction outperformed both correlation-based
feature removal (77.1% accuracy, 94 features) and PCA dimen-
sionality reduction (78.6% accuracy, 50 components), suggest-
ing that the feature set was well-suited for linear classification
and that discriminative information was distributed across mul-
tiple acoustic dimensions.

Logistic Regression consistently outperformed other clas-
sifiers across feature reduction strategies, with mean accuracy
of 75.7% compared to 72.9% for SVM, 70.7% for Random
Forest, and 70.4% for Gradient Boosting. Among feature re-
duction methods, PCA (50 components) achieved the highest
mean accuracy (75.0%) across all classifiers, followed by using
all features (73.9%) and variance threshold (73.9%). The PCA
model captured 99.1% of the cumulative variance with 50 com-
ponents, demonstrating that the acoustic feature space could be
effectively compressed while retaining discriminative informa-
tion. Feature reduction methods that selected subsets based on
univariate statistics or mutual information generally performed
worse than methods that transformed the feature space (PCA)
or removed redundancy (correlation-based removal). This sug-
gests that discriminative information is distributed across mul-
tiple features rather than concentrated in a small subset, consis-
tent with the multidimensional nature of prosodic abnormalities
in schizophrenia.

5. Discussion

Our findings demonstrate that prosodic abnormalities in
schizophrenia spectrum disorders are both perceptually salient
and computationally detectable when isolated from semantic
content. The comparable performance between human per-
ception (80.0% accuracy, AUC=0.820) and machine learning
(80.0% accuracy, AUC=0.805) suggests that prosodic features
carry substantial diagnostic information across multiple assess-
ment modalities.

Human raters reliably distinguished SSD from HC speech
based solely on prosodic cues, with large between-group differ-
ences (Cohen’s d=1.31). High specificity (90.0%) and moderate
sensitivity (73.3%) suggest that prosodic abnormalities, when
present, are highly distinctive, though not all individuals with
SSD exhibit equally pronounced markers. Unexpectedly, clin-
ical expertise showed no relationship with classification accu-
racy, suggesting that prosodic abnormalities may be sufficiently
salient for untrained listeners to detect, or that clinical training

emphasizes content-level rather than suprasegmental features.
In other words, the perceptual distinction of speech from people
with SSD based on prosodic cues relies less on specialized clin-
ical or linguistic training, and more on general skills - perhaps
social processing skills - that are accessible to untrained individ-
uals. This would also provide one explanation for the observed
relationships between speech and language impairment in SSD
and poor functional outcomes [26] - because the impairments
can readily be perceived by interlocutors in daily life. The mod-
erate inter-rater agreement (mean r=0.39) indicates substantial
individual variation in perceptual strategies.

The machine learning results demonstrate that automated
classification can match human performance while offering
scalability and consistency advantages. The success of Logistic
Regression without feature reduction suggests that prosodic ab-
normalities manifest across multiple acoustic dimensions rather
than being concentrated in a small subset of features. Ex-
plainable Al techniques, such as feature importance analysis
and SHAP values, could identify which prosodic characteristics
drive individual classifications, supporting clinical decision-
making and trust in automated assessments.

Several limitations warrant consideration. Our human per-
ception study used filtered speech samples, which may not fully
capture prosodic variation in extended spontaneous conversa-
tion. The modest pool of raters limited power to detect relation-
ships with symptom severity. Our filtering approach preserved
pitch contours but removed other potentially diagnostic acoustic
information.

Prosody-based assessment could provide an objective,
language-independent screening tool for psychosis, valuable
in multilingual settings or for monitoring disease progression.
However, the moderate sensitivity indicates that prosodic mark-
ers alone are insufficient for diagnosis and should complement
comprehensive clinical assessment. Future research should ex-
amine whether prosodic features track symptom changes over
time, investigate which acoustic-prosodic parameters drive clas-
sification through explainable Al, establish cross-linguistic va-
lidity, and determine specificity to schizophrenia spectrum dis-
orders versus other psychiatric conditions. We should also ex-
amine whether prosodic changes in SSD offer a viable avenue
for intervention - whether pragmatic language training [27], for
example, can normalize speech prosody and whether this then
has a downsteam effect on social and occupational functioning.

In conclusion, our parallel experiments demonstrate that
prosodic abnormalities in schizophrenia spectrum disorders are
robustly detectable independent of semantic content, achieving
approximately 80% classification accuracy through both human
perception and machine learning. These findings support de-
veloping prosody-based assessment tools as potential language-
independent biomarkers for psychosis screening and monitor-
ing, with explainable Al offering pathways to enhance clinical
interpretability.
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