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Abstract1

Abnormal prosody is a prominent component of the speech2

changes in schizophrenia spectrum disorders (SSD). We inves-3

tigated whether prosodic information alone can distinguish SSD4

from healthy control (HC) speech through parallel human per-5

ception and machine learning experiments. Speech samples6

from 25 participants (15 SSD, 10 HC) underwent adaptive low-7

pass filtering to preserve prosodic contours while removing se-8

mantic content. Thirty-three raters with varying clinical exper-9

tise evaluated 50 filtered stimuli on a 4-point Likert scale. Ag-10

gregate ratings achieved 80.0% accuracy (AUC=0.820). Unex-11

pectedly, clinical expertise showed no relationship with classi-12

fication accuracy (r=-0.17, p=0.369). Machine learning classi-13

fiers trained on 108 acoustic features from 251 participants (16214

HC, 89 SSD) achieved comparable performance, with Logis-15

tic Regression reaching 80.0% accuracy (AUC=0.805). Both16

approaches demonstrated that prosodic abnormalities in SSD17

are perceptually salient and computationally detectable inde-18

pendent of semantic content. These findings support prosody-19

based markers as potential language-independent biomarkers20

for screening applications, while highlighting the comparable21

performance of human perception and automated classification22

in utilizing suprasegmental speech information.23

Index Terms: speech recognition, speech biomarker, clinical24

speech25

1. Introduction26

Speech abnormalities have long been recognized as clinically27

significant features of schizophrenia spectrum disorders (SSD),28

encompassing both content-level disorganization and supraseg-29

mental characteristics [1, 2]. While much research has focused30

on linguistic and semantic aspects of speech in psychosis [3],31

prosodic features – including fundamental frequency (F0) pat-32

terns, rhythm, and intonation – represent a relatively understud-33

ied dimension that may carry diagnostic information.34

Previous studies have documented that individuals with35

SSD often exhibit atypical prosodic patterns, commonly de-36

scribed as “flat affect” or monotonous speech [4, 5]. These ob-37

servations raise a fundamental question: can prosodic informa-38

tion alone, isolated from semantic content, enable detection of39

psychosis? This question has both theoretical and practical im-40

plications. Theoretically, it addresses whether prosodic abnor-41

malities in SSD are sufficiently distinctive to be perceptible in-42

dependent of other speech characteristics. Practically, prosody-43

based markers could potentially serve as language-independent44

biomarkers for screening or monitoring purposes, with the pos-45

sibility of expanding to other clinical conditions [6].46

To investigate this question, we conducted two parallel ex-47

periments using speech samples from individuals with SSD and48

healthy controls. Following the methodology outlined in recent 49

work on dialect classification [7], we applied adaptive low-pass 50

filtering to isolate prosodic information while removing intel- 51

ligible semantic content. This processing preserves pitch con- 52

tours and rhythmic patterns while rendering the speech unintel- 53

ligible – creating stimuli that contain prosodic information but 54

lack lexical content. Our study addresses three specific research 55

questions: 56

1. Can human raters distinguish SSD from health controls’ 57

(HC) speech based solely on prosodic information, and does 58

clinical expertise influence this ability? 59

2. Can machine learning classifiers trained on acoustic features 60

achieve accurate SSD/HC discrimination? 61

3. How do human perception and automated classification com- 62

pare in utilizing prosodic information for psychosis detec- 63

tion? 64

By comparing human perception with machine learning ap- 65

proaches, we aim to understand both the perceptual salience of 66

prosodic abnormalities in psychosis and the potential for devel- 67

oping automated assessment tools. 68

2. Previous Studies 69

Research on speech in schizophrenia has identified abnormali- 70

ties across multiple dimensions. At the semantic and discourse 71

level, studies have documented thought disorder, tangentiality, 72

and reduced coherence [8, 9, 10, 11]. At the acoustic-prosodic 73

level, individuals with SSD often exhibit reduced pitch variabil- 74

ity, abnormal speech rate, and altered rhythm patterns [4, 5]. 75

Compton et al., [5] demonstrated computationally-derived ev- 76

idence of monotone speech, with reduced F0 variability cor- 77

relating with clinical ratings of flat affect. Parola et al., [4] 78

conducted a cross-linguistic meta-analysis showing that voice 79

patterns can serve as markers of schizophrenia across diverse 80

languages and populations. Recent work has also examined 81

harmonic-to-noise ratio (HNR) and other voice quality mea- 82

sures as potential objective biomarkers of negative symptoms 83

[12]. 84

Low-pass filtering has been successfully employed to iso- 85

late prosodic information while obscuring articulatory detail 86

[13, 14]. Parsons et al. [7] demonstrated that adaptive fil- 87

tering methods, where cutoff frequencies are dynamically ad- 88

justed based on speaker-specific F0 characteristics, effectively 89

preserve pitch contours while removing formant structure nec- 90

essary for phoneme identification. While clinicians routinely 91

observe and document prosodic changes in psychiatric assess- 92

ment (e.g., contributing to “flat vs. labile vs. expansive affect”, 93

“monotonous vs. stilted speech”), systematic studies of human 94

perception of these features and their relationship to diagnostic 95



impression remain limited [15]. Research on affective prosody96

has primarily focused on patients’ ability to perceive emotional97

prosody [16, 17], rather than on how listeners perceive prosodic98

abnormalities in patients’ speech. Studies examining clinical99

expertise suggest that trained raters [18] may be more sensitive100

to subtle speech abnormalities, though the extent to which clin-101

ical experience enhances detection of prosodic markers specifi-102

cally remains unclear.103

Automated speech analysis has increasingly been applied to104

psychiatric assessment [19], with recent studies demonstrating105

that machine learning classifiers can distinguish SSD from HC106

speech with substantial accuracy [20, 21]. However, most ex-107

isting work analyzes complete speech samples containing both108

prosodic and semantic information. Studies specifically ex-109

amining prosody-only classification in clinical populations are110

rare. Our previous work [22] highlighted the importance of ro-111

bust feature extraction and the challenges of cross-toolkit con-112

sistency in clinical applications – a concern particularly rele-113

vant when developing automated assessment tools for clinical114

deployment.115

3. Methods116

3.1. Datasets117

Our study combines data from two internal datasets with dif-118

ferent collection protocols (“ACES” and “Remora”). All par-119

ticipants completed open-ended speech tasks designed to elicit120

naturalistic, spontaneous-style speech. General symptom sever-121

ity was assessed with the Brief Psychiatry Rating Scale (BPRS)122

[23] and negative symptoms were assessed with the Scale for123

the Assessment of Negative Symptoms (SANS) [24]. From124

these combined datasets, 25 participants were randomly se-125

lected for the human perception experiment, while all available126

participants (N=251) were used for machine learning classifica-127

tion. For the human perception experiment, we stratified partic-128

ipants based on BPRS total scores into severity categories, with129

participant characteristics shown in Table 1: mild (18-31), mod-130

erate (20-37), and severe (33-67). All study procedures were131

approved by the Institutional Review Board, and all participants132

provided informed consent.133

3.2. Stimulus preparation134

To isolate prosodic information, we applied adaptive low-pass135

filtering following [7]. From each recording, we extracted the136

first and last 15 seconds of speech excluding silence. For each137

segment, F0 was estimated using Librosa [25] with a search138

range of 50-400 Hz. The cutoff frequency was computed using139

cutoff = 420.2 × (1 − e−0.0124×F0), bounded between 200-140

500 Hz, ensuring the filter preserves F0 and lower harmonics141

while removing formant structure. A 5th-order Butterworth fil-142

ter was applied, and the filtered audio was normalized to 80%143

of maximum amplitude.144

3.3. Human Perception Experiment145

Each of the 25 pairs of low-pass filtered samples were reviewed146

by 33 raters who are blinded to the diagnosis of the participant.147

Rater had varying clinical experience working with individuals148

with psychosis, categorized into five expertise levels from min-149

imal (n=7) to extensively experienced (n=2, 10+ years). Raters150

also reported their experience with prosody and phonetics re-151

search (minimal: n=12, some: n=14, moderate: n=5, extensive:152

n=1). Raters were instructed that audio files had been processed153

to remove semantic content while preserving prosody. For each 154

of the 25 participants, raters listened to two filtered audio seg- 155

ments (first and last 15 seconds) and provided a single rating on 156

a 4-point Likert scale: 1 (Very Unlikely to have SSD), 2 (Some- 157

what Unlikely), 3 (Somewhat Likely), 4 (Very Likely to have 158

SSD). Raters based judgments solely on prosodic features in- 159

cluding rhythm, intonation, and speech patterns. Stimuli were 160

randomized, and raters could replay segments as needed. 161

3.4. Machine Learning Classification 162

Acoustic features were extracted from both datasets using 163

OpenSMILE’s eGeMAPS configuration, which provides a stan- 164

dardized set of 88 acoustic parameters including F0 statistics 165

(mean, range, percentiles), intensity measures, spectral fea- 166

tures, voice quality metrics (HNR, jitter, shimmer), and mel- 167

frequency cepstral coefficients (MFCCs). Timing features in- 168

cluding pause statistics and speech rate measures were extracted 169

separately, yielding an additional 107 temporal parameters. All 170

features were extracted from the low-pass filtered audio at 16 171

kHz sampling rate with 60ms frame size and 10ms hop length to 172

match the human perception stimuli processing. Features were 173

aggregated at the participant level by averaging across record- 174

ings. We removed features with more than 50% zero or missing 175

values, reducing the feature set from 194 to 108 features (20 176

timing features, 88 acoustic features), and imputed remaining 177

missing values using median imputation. 178

To identify the most informative features, we compared 179

eight feature reduction strategies: no reduction (baseline), 180

variance threshold (removing features with variance < 0.01), 181

correlation-based removal (eliminating features with > 0.95 182

correlation), univariate selection using F-statistic (top 50 fea- 183

tures), mutual information-based selection (top 50), recursive 184

feature elimination (RFE) with Random Forest (top 50), Ran- 185

dom Forest importance ranking (top 50), and principal com- 186

ponent analysis (PCA, 50 components). For each strategy, we 187

evaluated four classifiers: Logistic Regression with L2 regu- 188

larization (C=1.0, max 1000 iterations), Random Forest (100 189

estimators, max depth=None), Gradient Boosting (100 estima- 190

tors, learning rate=0.1), and Support Vector Machine with RBF 191

kernel (C=1.0, gamma=‘scale’). 192

We employed participant-level group-based splitting using 193

GroupShuffleSplit with a 70-30 train-test split, ensuring that all 194

recordings across multiple tasks from a given participant ap- 195

peared only in either the training or test set to prevent data 196

leakage. Features were standardized using StandardScaler fit on 197

training data and applied to test data. Model performance was 198

evaluated using accuracy, F1-score, and area under the ROC 199

curve (AUC). All experiments used a fixed random seed (42) 200

for reproducibility. 201

4. Result 202

4.1. Human Perception Experiment Results 203

To evaluate raters’ ability to distinguish SSD from HC based 204

on prosodic features, we computed mean ratings across all 33 205

raters for each of the 25 sets of stimuli. Using an optimal thresh- 206

old of 2.5 (determined by F1 score maximization), the aggre- 207

gate ratings achieved 80.0% accuracy (20/25 correct classifica- 208

tions). Table 2 summarizes the classification performance and 209

group comparison statistics. The classifier demonstrated high 210

specificity (90.0%, 9/10 HC correctly identified) and moderate 211

sensitivity (73.3%, 11/15 SSD correctly identified), with pos- 212

itive predictive value of 91.7% and negative predictive value 213



Table 1: Demographic and Clinical Characteristics of Participants

HC SSD-Mild SSD-Moderate SSD-Severe p-value All SSD
(n=10) (n=6) (n=6) (n=3) (n=15)

Age, y 30.3 (5.4) 23.9 (3.7) 25.8 (7.6) 26.9 (0.9) 0.150 25.2 (5.2)
Female, n (%) 7 (70%) 1 (17%) 2 (33%) 0 (0%) – 3 (20%)
Race, n (%)

White 4 (40%) 2 (33%) 1 (17%) 0 (0%) – 3 (20%)
Black 3 (30%) 2 (33%) 3 (50%) 0 (0%) – 5 (33%)
Asian 0 (0%) 1 (17%) 1 (17%) 0 (0%) – 2 (13%)
Multiple 3 (30%) 1 (17%) 0 (0%) 1 (33%) – 2 (13%)

Education, y 17.2 (2.4) 14.3 (1.6) 11.8 (2.2) 12.7 (2.1) 0.001 13.0 (2.2)

Clinical Characteristics
BPRS Total – 25.2 (5.1) 31.7 (6.2) 45.7 (18.6) 0.026 31.9 (11.5)
SANS Total – 18.2 (11.1) 28.3 (13.4) 16.3 (8.1) 0.253 21.9 (12.2)

Results of ANOVA comparing groups are shown in the p-value column. BPRS = Brief Psychiatric Rating Scale; SANS = Scale for the Assessment of
Negative Symptoms.

Table 2: Human perception classification performance

Metric Value

Accuracy 80.0% (20/25)
Sensitivity 73.3% (11/15)
Specificity 90.0% (9/10)
Positive Predictive Value 91.7%
Negative Predictive Value 69.2%
AUC-ROC 0.820 (95% CI: 0.657–0.984)

Group Comparison
SSD Mean Rating 2.79 (SD = 0.61)
HC Mean Rating 2.03 (SD = 0.56)
Group Difference t(23) = 3.15, p = 0.0045
Cohen’s d 1.31

of 69.2%. Receiver operating characteristic analysis yielded214

an AUC of 0.820 (95% CI: 0.657–0.984), indicating good dis-215

criminative ability. Mean ratings differed significantly between216

groups: SSD participants received higher ratings (M = 2.79, SD217

= 0.61) compared to HC participants (M = 2.03, SD = 0.56),218

t(23) = 3.15, p = 0.0045, Cohen’s d = 1.31. This large ef-219

fect size indicates that prosodic features provided substantial220

information for group discrimination. Individual rater accuracy221

ranged from 44.0% to 80.0% (M = 66.2%, Mdn = 68.0%, SD =222

8.7%). Three raters achieved the maximum accuracy of 80.0%,223

correctly classifying 20 of 25 participants. Inter-rater agree-224

ment was moderate, with mean pairwise Spearman correlation225

of r = 0.39 (Mdn = 0.43, range: -0.43 to 0.80), suggesting that226

while raters generally agreed on which prosodic patterns indi-227

cated SSD, there was considerable individual variation in per-228

ceptual strategies.229

To test whether clinical or research expertise influenced230

classification accuracy, we conducted one-way ANOVAs com-231

paring mean accuracy across experience levels. For clinical ex-232

perience, there was no significant difference in accuracy across233

the five expertise levels, F(4, 28) = 1.39, p = 0.263, η2
p =234

0.17. Mean accuracy by clinical experience level ranged from235

60.0% (extensive experience) to 71.4% (some experience), with236

no monotonic relationship between expertise and performance.237

Similarly, research experience in prosody and phonetics showed238

no significant effect on accuracy, F(3, 28) = 0.11, p = 0.957, η2
p239

= 0.01. Spearman correlations confirmed these null findings: 240

clinical experience level showed a weak negative correlation 241

with accuracy (r = -0.17, p = 0.369), while research experience 242

showed essentially no relationship (r = 0.01, p = 0.973). No- 243

tably, the three raters achieving maximum accuracy (80%) had 244

relatively low expertise levels: two had “some” clinical experi- 245

ence with “minimal” research experience, and one had “mini- 246

mal” clinical experience with “some” research experience. 247

Examining individual samples revealed substantial varia- 248

tion in perceived prosodic abnormality. Two SSD participants 249

received near-unanimous classification as SSD, with mean rat- 250

ings of 3.84 and 3.74 respectively, and 100% of raters assigning 251

them ratings of 3 or 4. Conversely, one HC participant was 252

unanimously classified as HC, receiving a mean rating of 1.58 253

with zero ratings of 4 (“Very Likely SSD”). Four SSD partici- 254

pants were consistently misclassified as HC, with mean ratings 255

below 2.5. Interestingly, three of these four were classified as 256

moderate severity, suggesting that prosodic abnormalities may 257

not directly track overall symptom severity. Indeed, when strat- 258

ifying SSD participants by severity, we found no significant re- 259

lationship between BPRS-based severity categories and mean 260

prosodic ratings, F(2, 12) = 1.21, p = 0.33. Mild SSD cases re- 261

ceived numerically higher ratings (M = 3.02, SD = 0.44) than 262

moderate (M = 2.67, SD = 0.89) or severe cases (M = 2.51, SD = 263

0.42), though this trend did not reach significance in our sample. 264

Both BPRS and SANS total scores showed no correlation with 265

prosody ratings (BPRS: r = -0.027, p = 0.925; SANS: r = 0.239, 266

p = 0.390). One HC participant was misclassified as SSD, re- 267

ceiving a mean rating of 3.23. This false positive case merits 268

further investigation, as it suggests that prosodic patterns asso- 269

ciated with SSD may occasionally occur in healthy individuals, 270

or that other factors (e.g., speaking style, affective state during 271

recording) can produce similar acoustic-prosodic profiles. 272

4.2. Machine Learning Classification Results 273

The machine learning classification analysis revealed that 274

prosodic features extracted from low-pass filtered speech can 275

distinguish SSD from HC participants with moderate to good 276

accuracy. Table 3 presents the performance of selected model 277

configurations. 278

The best performing model used Logistic Regression with 279

correlation-based feature reduction, achieving 80.0% accuracy 280

(F1=0.696, AUC=0.805) on the held-out test set. Using all 108 281



Table 3: Performance comparison of selected machine learning
models for SSD vs. HC classification using prosodic features.
LR: Logistic Regression, RF: Random Forest, Acc.: Accuracy,
N Feat.: Number of features, All: No feature reduction, Corr:
Correlation-based feature removal, PCA-50: PCA with 50 com-
ponents, Uni-50: Univariate selection with 50 features. Best
performance shown in bold.

Model Acc. F1 AUC N Feat.

LR (All) 80.00 69.57 80.53 108
LR (PCA-50) 78.57 68.09 78.12 50
LR (Corr) 77.14 66.67 80.36 94
LR (Uni-50) 75.71 60.47 75.37 50
RF (PCA-50) 74.29 62.50 72.35 50
SVM (PCA-50) 74.29 62.50 74.29 50
SVM (All) 72.86 61.22 68.73 108
GB (PCA-50) 72.86 59.57 68.48 50

features without reduction outperformed both correlation-based282

feature removal (77.1% accuracy, 94 features) and PCA dimen-283

sionality reduction (78.6% accuracy, 50 components), suggest-284

ing that the feature set was well-suited for linear classification285

and that discriminative information was distributed across mul-286

tiple acoustic dimensions.287

Logistic Regression consistently outperformed other clas-288

sifiers across feature reduction strategies, with mean accuracy289

of 75.7% compared to 72.9% for SVM, 70.7% for Random290

Forest, and 70.4% for Gradient Boosting. Among feature re-291

duction methods, PCA (50 components) achieved the highest292

mean accuracy (75.0%) across all classifiers, followed by using293

all features (73.9%) and variance threshold (73.9%). The PCA294

model captured 99.1% of the cumulative variance with 50 com-295

ponents, demonstrating that the acoustic feature space could be296

effectively compressed while retaining discriminative informa-297

tion. Feature reduction methods that selected subsets based on298

univariate statistics or mutual information generally performed299

worse than methods that transformed the feature space (PCA)300

or removed redundancy (correlation-based removal). This sug-301

gests that discriminative information is distributed across mul-302

tiple features rather than concentrated in a small subset, consis-303

tent with the multidimensional nature of prosodic abnormalities304

in schizophrenia.305

5. Discussion306

Our findings demonstrate that prosodic abnormalities in307

schizophrenia spectrum disorders are both perceptually salient308

and computationally detectable when isolated from semantic309

content. The comparable performance between human per-310

ception (80.0% accuracy, AUC=0.820) and machine learning311

(80.0% accuracy, AUC=0.805) suggests that prosodic features312

carry substantial diagnostic information across multiple assess-313

ment modalities.314

Human raters reliably distinguished SSD from HC speech315

based solely on prosodic cues, with large between-group differ-316

ences (Cohen’s d=1.31). High specificity (90.0%) and moderate317

sensitivity (73.3%) suggest that prosodic abnormalities, when318

present, are highly distinctive, though not all individuals with319

SSD exhibit equally pronounced markers. Unexpectedly, clin-320

ical expertise showed no relationship with classification accu-321

racy, suggesting that prosodic abnormalities may be sufficiently322

salient for untrained listeners to detect, or that clinical training323

emphasizes content-level rather than suprasegmental features. 324

In other words, the perceptual distinction of speech from people 325

with SSD based on prosodic cues relies less on specialized clin- 326

ical or linguistic training, and more on general skills - perhaps 327

social processing skills - that are accessible to untrained individ- 328

uals. This would also provide one explanation for the observed 329

relationships between speech and language impairment in SSD 330

and poor functional outcomes [26] - because the impairments 331

can readily be perceived by interlocutors in daily life. The mod- 332

erate inter-rater agreement (mean r=0.39) indicates substantial 333

individual variation in perceptual strategies. 334

The machine learning results demonstrate that automated 335

classification can match human performance while offering 336

scalability and consistency advantages. The success of Logistic 337

Regression without feature reduction suggests that prosodic ab- 338

normalities manifest across multiple acoustic dimensions rather 339

than being concentrated in a small subset of features. Ex- 340

plainable AI techniques, such as feature importance analysis 341

and SHAP values, could identify which prosodic characteristics 342

drive individual classifications, supporting clinical decision- 343

making and trust in automated assessments. 344

Several limitations warrant consideration. Our human per- 345

ception study used filtered speech samples, which may not fully 346

capture prosodic variation in extended spontaneous conversa- 347

tion. The modest pool of raters limited power to detect relation- 348

ships with symptom severity. Our filtering approach preserved 349

pitch contours but removed other potentially diagnostic acoustic 350

information. 351

Prosody-based assessment could provide an objective, 352

language-independent screening tool for psychosis, valuable 353

in multilingual settings or for monitoring disease progression. 354

However, the moderate sensitivity indicates that prosodic mark- 355

ers alone are insufficient for diagnosis and should complement 356

comprehensive clinical assessment. Future research should ex- 357

amine whether prosodic features track symptom changes over 358

time, investigate which acoustic-prosodic parameters drive clas- 359

sification through explainable AI, establish cross-linguistic va- 360

lidity, and determine specificity to schizophrenia spectrum dis- 361

orders versus other psychiatric conditions. We should also ex- 362

amine whether prosodic changes in SSD offer a viable avenue 363

for intervention - whether pragmatic language training [27], for 364

example, can normalize speech prosody and whether this then 365

has a downsteam effect on social and occupational functioning. 366

In conclusion, our parallel experiments demonstrate that 367

prosodic abnormalities in schizophrenia spectrum disorders are 368

robustly detectable independent of semantic content, achieving 369

approximately 80% classification accuracy through both human 370

perception and machine learning. These findings support de- 371

veloping prosody-based assessment tools as potential language- 372

independent biomarkers for psychosis screening and monitor- 373

ing, with explainable AI offering pathways to enhance clinical 374

interpretability. 375
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