

Speech Prosody in Schizophrenia Spectrum Disorders: Perceptual Evaluation and Machine Classification

Anonymous submission to Speech Prosody 2026

Abstract

Abnormal prosody is a prominent component of the speech changes in schizophrenia spectrum disorders (SSD). We investigated whether prosodic information alone can distinguish SSD from healthy control (HC) speech through parallel human perception and machine learning experiments. Speech samples from 25 participants (15 SSD, 10 HC) underwent adaptive low-pass filtering to preserve prosodic contours while removing semantic content. Thirty-three raters with varying clinical expertise evaluated 50 filtered stimuli on a 4-point Likert scale. Aggregate ratings achieved 80.0% accuracy (AUC=0.820). Unexpectedly, clinical expertise showed no relationship with classification accuracy ($r=-0.17$, $p=0.369$). Machine learning classifiers trained on 108 acoustic features from 251 participants (162 HC, 89 SSD) achieved comparable performance, with Logistic Regression reaching 80.0% accuracy (AUC=0.805). Both approaches demonstrated that prosodic abnormalities in SSD are perceptually salient and computationally detectable independent of semantic content. These findings support prosody-based markers as potential language-independent biomarkers for screening applications, while highlighting the comparable performance of human perception and automated classification in utilizing suprasegmental speech information.

Index Terms: speech recognition, speech biomarker, clinical speech

1. Introduction

Speech abnormalities have long been recognized as clinically significant features of schizophrenia spectrum disorders (SSD), encompassing both content-level disorganization and suprasegmental characteristics [1, 2]. While much research has focused on linguistic and semantic aspects of speech in psychosis [3], prosodic features – including fundamental frequency (F0) patterns, rhythm, and intonation – represent a relatively understudied dimension that may carry diagnostic information.

Previous studies have documented that individuals with SSD often exhibit atypical prosodic patterns, commonly described as “flat affect” or monotonous speech [4, 5]. These observations raise a fundamental question: can prosodic information alone, isolated from semantic content, enable detection of psychosis? This question has both theoretical and practical implications. Theoretically, it addresses whether prosodic abnormalities in SSD are sufficiently distinctive to be perceptible independent of other speech characteristics. Practically, prosody-based markers could potentially serve as language-independent biomarkers for screening or monitoring purposes, with the possibility of expanding to other clinical conditions [6].

To investigate this question, we conducted two parallel experiments using speech samples from individuals with SSD and

healthy controls. Following the methodology outlined in recent work on dialect classification [7], we applied adaptive low-pass filtering to isolate prosodic information while removing intelligible semantic content. This processing preserves pitch contours and rhythmic patterns while rendering the speech unintelligible – creating stimuli that contain prosodic information but lack lexical content. Our study addresses three specific research questions:

1. Can human raters distinguish SSD from health controls' (HC) speech based solely on prosodic information, and does clinical expertise influence this ability?
2. Can machine learning classifiers trained on acoustic features achieve accurate SSD/HC discrimination?
3. How do human perception and automated classification compare in utilizing prosodic information for psychosis detection?

By comparing human perception with machine learning approaches, we aim to understand both the perceptual salience of prosodic abnormalities in psychosis and the potential for developing automated assessment tools.

2. Previous Studies

Research on speech in schizophrenia has identified abnormalities across multiple dimensions. At the semantic and discourse level, studies have documented thought disorder, tangentiality, and reduced coherence [8, 9, 10, 11]. At the acoustic-prosodic level, individuals with SSD often exhibit reduced pitch variability, abnormal speech rate, and altered rhythm patterns [4, 5]. Compton et al., [5] demonstrated computationally-derived evidence of monotone speech, with reduced F0 variability correlating with clinical ratings of flat affect. Parola et al., [4] conducted a cross-linguistic meta-analysis showing that voice patterns can serve as markers of schizophrenia across diverse languages and populations. Recent work has also examined harmonic-to-noise ratio (HNR) and other voice quality measures as potential objective biomarkers of negative symptoms [12].

Low-pass filtering has been successfully employed to isolate prosodic information while obscuring articulatory detail [13, 14]. Parsons et al. [7] demonstrated that adaptive filtering methods, where cutoff frequencies are dynamically adjusted based on speaker-specific F0 characteristics, effectively preserve pitch contours while removing formant structure necessary for phoneme identification. While clinicians routinely observe and document prosodic changes in psychiatric assessment (e.g., contributing to “flat vs. labile vs. expansive affect”, “monotonous vs. stilted speech”), systematic studies of human perception of these features and their relationship to diagnostic

96 impression remain limited [15]. Research on affective prosody
97 has primarily focused on patients' ability to perceive emotional
98 prosody [16, 17], rather than on how listeners perceive prosodic
99 abnormalities in patients' speech. Studies examining clinical
100 expertise suggest that trained raters [18] may be more sensitive
101 to subtle speech abnormalities, though the extent to which clinical
102 experience enhances detection of prosodic markers specifically
103 remains unclear.

104 Automated speech analysis has increasingly been applied to
105 psychiatric assessment [19], with recent studies demonstrating
106 that machine learning classifiers can distinguish SSD from HC
107 speech with substantial accuracy [20, 21]. However, most existing
108 work analyzes complete speech samples containing both
109 prosodic and semantic information. Studies specifically examining
110 prosody-only classification in clinical populations are rare. Our
111 previous work [22] highlighted the importance of robust
112 feature extraction and the challenges of cross-toolkit
113 consistency in clinical applications – a concern particularly relevant
114 when developing automated assessment tools for clinical
115 deployment.

116 3. Methods

117 3.1. Datasets

118 Our study combines data from two internal datasets with
119 different collection protocols (“ACES” and “Remora”). All
120 participants completed open-ended speech tasks designed to elicit
121 naturalistic, spontaneous-style speech. General symptom severity
122 was assessed with the Brief Psychiatry Rating Scale (BPRS)
123 [23] and negative symptoms were assessed with the Scale for
124 the Assessment of Negative Symptoms (SANS) [24]. From
125 these combined datasets, 25 participants were randomly selected
126 for the human perception experiment, while all available
127 participants (N=251) were used for machine learning classification.
128 For the human perception experiment, we stratified participants
129 based on BPRS total scores into severity categories, with
130 participant characteristics shown in Table 1: mild (18-31), moderate
131 (20-37), and severe (33-67). All study procedures were
132 approved by the Institutional Review Board, and all participants
133 provided informed consent.

134 3.2. Stimulus preparation

135 To isolate prosodic information, we applied adaptive low-pass
136 filtering following [7]. From each recording, we extracted the
137 first and last 15 seconds of speech excluding silence. For each
138 segment, F0 was estimated using Librosa [25] with a search
139 range of 50-400 Hz. The cutoff frequency was computed using
140 cutoff = $420.2 \times (1 - e^{-0.0124 \times F_0})$, bounded between 200-
141 500 Hz, ensuring the filter preserves F0 and lower harmonics
142 while removing formant structure. A 5th-order Butterworth filter
143 was applied, and the filtered audio was normalized to 80%
144 of maximum amplitude.

145 3.3. Human Perception Experiment

146 Each of the 25 pairs of low-pass filtered samples were reviewed
147 by 33 raters who are blinded to the diagnosis of the participant.
148 Rater had varying clinical experience working with individuals
149 with psychosis, categorized into five expertise levels from minimal
150 (n=7) to extensively experienced (n=2, 10+ years). Raters
151 also reported their experience with prosody and phonetics
152 research (minimal: n=12, some: n=14, moderate: n=5, extensive:
153 n=1). Raters were instructed that audio files had been processed

154 to remove semantic content while preserving prosody. For each
155 of the 25 participants, raters listened to two filtered audio segments
156 (first and last 15 seconds) and provided a single rating on
157 a 4-point Likert scale: 1 (Very Unlikely to have SSD), 2 (Somewhat
158 Unlikely), 3 (Somewhat Likely), 4 (Very Likely to have
159 SSD). Raters based judgments solely on prosodic features including
160 rhythm, intonation, and speech patterns. Stimuli were
161 randomized, and raters could replay segments as needed.

162 3.4. Machine Learning Classification

163 Acoustic features were extracted from both datasets using
164 OpenSMILE’s eGeMAPS configuration, which provides a stand-
165 dardized set of 88 acoustic parameters including F0 statistics
166 (mean, range, percentiles), intensity measures, spectral fea-
167 tures, voice quality metrics (HNR, jitter, shimmer), and mel-
168 frequency cepstral coefficients (MFCCs). Timing features in-
169 cluding pause statistics and speech rate measures were extracted
170 separately, yielding an additional 107 temporal parameters. All
171 features were extracted from the low-pass filtered audio at 16
172 kHz sampling rate with 60ms frame size and 10ms hop length to
173 match the human perception stimuli processing. Features were
174 aggregated at the participant level by averaging across recordings.
175 We removed features with more than 50% zero or missing
176 values, reducing the feature set from 194 to 108 features (20
177 timing features, 88 acoustic features), and imputed remaining
178 missing values using median imputation.

179 To identify the most informative features, we compared
180 eight feature reduction strategies: no reduction (baseline),
181 variance threshold (removing features with variance < 0.01),
182 correlation-based removal (eliminating features with > 0.95
183 correlation), univariate selection using F-statistic (top 50 fea-
184 tures), mutual information-based selection (top 50), recursive
185 feature elimination (RFE) with Random Forest (top 50), Ran-
186 dom Forest importance ranking (top 50), and principal com-
187 ponent analysis (PCA, 50 components). For each strategy, we
188 evaluated four classifiers: Logistic Regression with L2 regu-
189 larization (C=1.0, max 1000 iterations), Random Forest (100
190 estimators, max depth=None), Gradient Boosting (100 esti-
191 mators, learning rate=0.1), and Support Vector Machine with RBF
192 kernel (C=1.0, gamma='scale').

193 We employed participant-level group-based splitting using
194 GroupShuffleSplit with a 70-30 train-test split, ensuring that all
195 recordings across multiple tasks from a given participant ap-
196 peared only in either the training or test set to prevent data
197 leakage. Features were standardized using StandardScaler fit on
198 training data and applied to test data. Model performance was
199 evaluated using accuracy, F1-score, and area under the ROC
200 curve (AUC). All experiments used a fixed random seed (42)
201 for reproducibility.

202 4. Result

203 4.1. Human Perception Experiment Results

204 To evaluate raters' ability to distinguish SSD from HC based
205 on prosodic features, we computed mean ratings across all 33
206 raters for each of the 25 sets of stimuli. Using an optimal thresh-
207 old of 2.5 (determined by F1 score maximization), the aggre-
208 gate ratings achieved 80.0% accuracy (20/25 correct classifica-
209 tions). Table 2 summarizes the classification performance and
210 group comparison statistics. The classifier demonstrated high
211 specificity (90.0%, 9/10 HC correctly identified) and moderate
212 sensitivity (73.3%, 11/15 SSD correctly identified), with pos-
213 itive predictive value of 91.7% and negative predictive value

Table 1: Demographic and Clinical Characteristics of Participants

	HC (n=10)	SSD-Mild (n=6)	SSD-Moderate (n=6)	SSD-Severe (n=3)	p-value	All SSD (n=15)
Age, y	30.3 (5.4)	23.9 (3.7)	25.8 (7.6)	26.9 (0.9)	0.150	25.2 (5.2)
Female, n (%)	7 (70%)	1 (17%)	2 (33%)	0 (0%)	–	3 (20%)
Race, n (%)						
White	4 (40%)	2 (33%)	1 (17%)	0 (0%)	–	3 (20%)
Black	3 (30%)	2 (33%)	3 (50%)	0 (0%)	–	5 (33%)
Asian	0 (0%)	1 (17%)	1 (17%)	0 (0%)	–	2 (13%)
Multiple	3 (30%)	1 (17%)	0 (0%)	1 (33%)	–	2 (13%)
Education, y	17.2 (2.4)	14.3 (1.6)	11.8 (2.2)	12.7 (2.1)	0.001	13.0 (2.2)
Clinical Characteristics						
BPRS Total	–	25.2 (5.1)	31.7 (6.2)	45.7 (18.6)	0.026	31.9 (11.5)
SANS Total	–	18.2 (11.1)	28.3 (13.4)	16.3 (8.1)	0.253	21.9 (12.2)

Results of ANOVA comparing groups are shown in the *p*-value column. BPRS = Brief Psychiatric Rating Scale; SANS = Scale for the Assessment of Negative Symptoms.

Table 2: Human perception classification performance

Metric	Value
Accuracy	80.0% (20/25)
Sensitivity	73.3% (11/15)
Specificity	90.0% (9/10)
Positive Predictive Value	91.7%
Negative Predictive Value	69.2%
AUC-ROC	0.820 (95% CI: 0.657–0.984)
<i>Group Comparison</i>	
SSD Mean Rating	2.79 (SD = 0.61)
HC Mean Rating	2.03 (SD = 0.56)
Group Difference	t(23) = 3.15, <i>p</i> = 0.0045
Cohen's d	1.31

of 69.2%. Receiver operating characteristic analysis yielded an AUC of 0.820 (95% CI: 0.657–0.984), indicating good discriminative ability. Mean ratings differed significantly between groups: SSD participants received higher ratings ($M = 2.79$, $SD = 0.61$) compared to HC participants ($M = 2.03$, $SD = 0.56$), $t(23) = 3.15$, *p* = 0.0045, Cohen's *d* = 1.31. This large effect size indicates that prosodic features provided substantial information for group discrimination. Individual rater accuracy ranged from 44.0% to 80.0% ($M = 66.2\%$, $Mdn = 68.0\%$, $SD = 8.7\%$). Three raters achieved the maximum accuracy of 80.0%, correctly classifying 20 of 25 participants. Inter-rater agreement was moderate, with mean pairwise Spearman correlation of $r = 0.39$ ($Mdn = 0.43$, range: -0.43 to 0.80), suggesting that while raters generally agreed on which prosodic patterns indicated SSD, there was considerable individual variation in perceptual strategies.

To test whether clinical or research expertise influenced classification accuracy, we conducted one-way ANOVAs comparing mean accuracy across experience levels. For clinical experience, there was no significant difference in accuracy across the five expertise levels, $F(4, 28) = 1.39$, *p* = 0.263, $\eta_p^2 = 0.17$. Mean accuracy by clinical experience level ranged from 60.0% (extensive experience) to 71.4% (some experience), with no monotonic relationship between expertise and performance. Similarly, research experience in prosody and phonetics showed no significant effect on accuracy, $F(3, 28) = 0.11$, *p* = 0.957, η_p^2

= 0.01. Spearman correlations confirmed these null findings: clinical experience level showed a weak negative correlation with accuracy ($r = -0.17$, *p* = 0.369), while research experience showed essentially no relationship ($r = 0.01$, *p* = 0.973). Notably, the three raters achieving maximum accuracy (80%) had relatively low expertise levels: two had “some” clinical experience with “minimal” research experience, and one had “minimal” clinical experience with “some” research experience.

Examining individual samples revealed substantial variation in perceived prosodic abnormality. Two SSD participants received near-unanimous classification as SSD, with mean ratings of 3.84 and 3.74 respectively, and 100% of raters assigning them ratings of 3 or 4. Conversely, one HC participant was unanimously classified as HC, receiving a mean rating of 1.58 with zero ratings of 4 (“Very Likely SSD”). Four SSD participants were consistently misclassified as HC, with mean ratings below 2.5. Interestingly, three of these four were classified as moderate severity, suggesting that prosodic abnormalities may not directly track overall symptom severity. Indeed, when stratifying SSD participants by severity, we found no significant relationship between BPRS-based severity categories and mean prosodic ratings, $F(2, 12) = 1.21$, *p* = 0.33. Mild SSD cases received numerically higher ratings ($M = 3.02$, $SD = 0.44$) than moderate ($M = 2.67$, $SD = 0.89$) or severe cases ($M = 2.51$, $SD = 0.42$), though this trend did not reach significance in our sample. Both BPRS and SANS total scores showed no correlation with prosody ratings (BPRS: $r = -0.027$, *p* = 0.925; SANS: $r = 0.239$, *p* = 0.390). One HC participant was misclassified as SSD, receiving a mean rating of 3.23. This false positive case merits further investigation, as it suggests that prosodic patterns associated with SSD may occasionally occur in healthy individuals, or that other factors (e.g., speaking style, affective state during recording) can produce similar acoustic-prosodic profiles.

4.2. Machine Learning Classification Results

The machine learning classification analysis revealed that prosodic features extracted from low-pass filtered speech can distinguish SSD from HC participants with moderate to good accuracy. Table 3 presents the performance of selected model configurations.

The best performing model used Logistic Regression with correlation-based feature reduction, achieving 80.0% accuracy ($F1=0.696$, $AUC=0.805$) on the held-out test set. Using all 108

Table 3: Performance comparison of selected machine learning models for SSD vs. HC classification using prosodic features. LR: Logistic Regression, RF: Random Forest, Acc.: Accuracy, N Feat.: Number of features, All: No feature reduction, Corr: Correlation-based feature removal, PCA-50: PCA with 50 components, Uni-50: Univariate selection with 50 features. Best performance shown in bold.

Model	Acc.	F1	AUC	N Feat.
LR (All)	80.00	69.57	80.53	108
LR (PCA-50)	78.57	68.09	78.12	50
LR (Corr)	77.14	66.67	80.36	94
LR (Uni-50)	75.71	60.47	75.37	50
RF (PCA-50)	74.29	62.50	72.35	50
SVM (PCA-50)	74.29	62.50	74.29	50
SVM (All)	72.86	61.22	68.73	108
GB (PCA-50)	72.86	59.57	68.48	50

282 features without reduction outperformed both correlation-based
 283 feature removal (77.1% accuracy, 94 features) and PCA dimensionality
 284 reduction (78.6% accuracy, 50 components), suggesting
 285 that the feature set was well-suited for linear classification
 286 and that discriminative information was distributed across multiple
 287 acoustic dimensions.

288 Logistic Regression consistently outperformed other classifiers
 289 across feature reduction strategies, with mean accuracy
 290 of 75.7% compared to 72.9% for SVM, 70.7% for Random
 291 Forest, and 70.4% for Gradient Boosting. Among feature
 292 reduction methods, PCA (50 components) achieved the highest
 293 mean accuracy (75.0%) across all classifiers, followed by using
 294 all features (73.9%) and variance threshold (73.9%). The PCA
 295 model captured 99.1% of the cumulative variance with 50 components,
 296 demonstrating that the acoustic feature space could be effectively
 297 compressed while retaining discriminative information. Feature
 298 reduction methods that selected subsets based on univariate
 299 statistics or mutual information generally performed
 300 worse than methods that transformed the feature space (PCA)
 301 or removed redundancy (correlation-based removal). This
 302 suggests that discriminative information is distributed across
 303 multiple features rather than concentrated in a small subset, consistent
 304 with the multidimensional nature of prosodic abnormalities
 305 in schizophrenia.

5. Discussion

306 Our findings demonstrate that prosodic abnormalities in
 307 schizophrenia spectrum disorders are both perceptually salient
 308 and computationally detectable when isolated from semantic
 309 content. The comparable performance between human per-
 310 ception (80.0% accuracy, AUC=0.820) and machine learning
 311 (80.0% accuracy, AUC=0.805) suggests that prosodic features
 312 carry substantial diagnostic information across multiple assess-
 313 ment modalities.

314 Human raters reliably distinguished SSD from HC speech
 315 based solely on prosodic cues, with large between-group differ-
 316 ences (Cohen's $d=1.31$). High specificity (90.0%) and moderate
 317 sensitivity (73.3%) suggest that prosodic abnormalities, when
 318 present, are highly distinctive, though not all individuals with
 319 SSD exhibit equally pronounced markers. Unexpectedly, clin-
 320 ical expertise showed no relationship with classification accu-
 321 racy, suggesting that prosodic abnormalities may be sufficiently
 322 salient for untrained listeners to detect, or that clinical training

323 emphasizes content-level rather than suprasegmental features.
 324 In other words, the perceptual distinction of speech from people
 325 with SSD based on prosodic cues relies less on specialized clin-
 326 ical or linguistic training, and more on general skills - perhaps
 327 social processing skills - that are accessible to untrained individ-
 328 uals. This would also provide one explanation for the observed
 329 relationships between speech and language impairment in SSD
 330 and poor functional outcomes [26] - because the impairments
 331 can readily be perceived by interlocutors in daily life. The mod-
 332 erate inter-rater agreement (mean $r=0.39$) indicates substantial
 333 individual variation in perceptual strategies.

334 The machine learning results demonstrate that automated
 335 classification can match human performance while offering
 336 scalability and consistency advantages. The success of Logistic
 337 Regression without feature reduction suggests that prosodic ab-
 338 normalities manifest across multiple acoustic dimensions rather
 339 than being concentrated in a small subset of features. Ex-
 340 plainable AI techniques, such as feature importance analysis
 341 and SHAP values, could identify which prosodic characteristics
 342 drive individual classifications, supporting clinical decision-
 343 making and trust in automated assessments.

344 Several limitations warrant consideration. Our human per-
 345 ception study used filtered speech samples, which may not fully
 346 capture prosodic variation in extended spontaneous conversa-
 347 tion. The modest pool of raters limited power to detect relation-
 348 ships with symptom severity. Our filtering approach preserved
 349 pitch contours but removed other potentially diagnostic acoustic
 350 information.

351 Prosody-based assessment could provide an objective,
 352 language-independent screening tool for psychosis, valuable
 353 in multilingual settings or for monitoring disease progression.
 354 However, the moderate sensitivity indicates that prosodic mark-
 355 ers alone are insufficient for diagnosis and should complement
 356 comprehensive clinical assessment. Future research should ex-
 357 amine whether prosodic features track symptom changes over
 358 time, investigate which acoustic-prosodic parameters drive clas-
 359 sification through explainable AI, establish cross-linguistic val-
 360 idity, and determine specificity to schizophrenia spectrum dis-
 361 orders versus other psychiatric conditions. We should also ex-
 362 amine whether prosodic changes in SSD offer a viable avenue
 363 for intervention - whether pragmatic language training [27], for
 364 example, can normalize speech prosody and whether this then
 365 has a downstream effect on social and occupational functioning.

366 In conclusion, our parallel experiments demonstrate that
 367 prosodic abnormalities in schizophrenia spectrum disorders are
 368 robustly detectable independent of semantic content, achieving
 369 approximately 80% classification accuracy through both human
 370 perception and machine learning. These findings support de-
 371 veloping prosody-based assessment tools as potential language-
 372 independent biomarkers for psychosis screening and monitor-
 373 ing, with explainable AI offering pathways to enhance clinical
 374 interpretability.

6. References

- [1] M. A. Covington, C. He, C. Brown, L. Naçi, J. T. McClain, B. S. Fjordbak, J. Semple, and J. Brown, "Schizophrenia and the structure of language: the linguist's view," *Schizophrenia research*, vol. 77, no. 1, pp. 85–98, 2005.
- [2] X. Chang, W. Zhao, J. Kang, S. Xiang, C. Xie, H. Corona-Hernández, L. Palaniyappan, and J. Feng, "Language abnormalities in schizophrenia: binding core symptoms through contemporary empirical evidence," *Schizophrenia*, vol. 8, no. 1, p. 95, 2022.
- [3] S. X. Tang, R. Kriz, S. Cho, S. J. Park, J. Harowitz, R. E. Gur,

387 M. T. Bhati, D. H. Wolf, J. Sedoc, and M. Y. Liberman, "Natural 455
 388 language processing methods are sensitive to sub-clinical 456
 389 linguistic differences in schizophrenia spectrum disorders," *npj* 457
 390 *Schizophrenia*, vol. 7, no. 1, p. 25, 2021.

391 [4] A. Parola, A. Simonsen, J. M. Lin, Y. Zhou, H. Wang, S. Ubukata, 458
 392 K. Koelkebeck, V. Bliksted, and R. Fusaroli, "Voice patterns as 459
 393 markers of schizophrenia: building a cumulative generalizable 460
 394 approach via a cross-linguistic and meta-analysis based investigation," *Schizophrenia Bulletin*, vol. 49, no. Supplement_2, pp. 461
 395 S125–S141, 2023.

396 [5] M. T. Compton, A. Lunden, S. D. Cleary, L. Pauselli, Y. Alo- 462
 397 layan, B. Halpern, B. Broussard, A. Crisafio, L. Capulong, P. M. 463
 398 Balducci *et al.*, "The aprosody of schizophrenia: Computationally 464
 399 derived acoustic phonetic underpinnings of monotone speech," 465
 400 *Schizophrenia research*, vol. 197, pp. 392–399, 2018.

401 [6] A. S. G. Choi, J.-s. Kim, S.-h. Kim, M. S. Back, and S. Cho, 466
 402 "Crosslinguistic acoustic feature-based dementia classification 467
 403 using advanced learning architectures," in *Proceedings of the 468
 404 Fifth Workshop on Resources and Processing of linguistic, 469
 405 para-linguistic and extra-linguistic Data from people with various 470
 406 forms of cognitive/psychiatric/developmental impairments@ 471
 407 LREC-COLING 2024*, 2024, pp. 95–100.

408 [7] P. Parsons, H. S. Bremnes, K. Kvale, T. Svendsen, and G. Salvi, 472
 409 "Effects of prosodic information on dialect classification using 473
 410 whisper features," in *Proc. Interspeech 2025*, 2025, pp. 2785– 474
 411 2789.

412 [8] M. Spitzer, "A cognitive neuroscience view of schizophrenic 475
 413 thought disorder," *Schizophrenia Bulletin*, vol. 23, no. 1, pp. 29– 476
 414 50, 1997.

415 [9] L. Palaniyappan, P. Homan, and M. F. Alonso-Sanchez, "Language 477
 416 network dysfunction and formal thought disorder in 478
 417 schizophrenia," *Schizophrenia bulletin*, vol. 49, no. 2, pp. 479
 418 486–497, 2023.

419 [10] L. Pauselli, B. Halpern, S. D. Cleary, B. S. Ku, M. A. Covington, 480
 420 and M. T. Compton, "Computational linguistic analysis applied to 481
 421 a semantic fluency task to measure derailment and tangentiality in 482
 422 schizophrenia," *Psychiatry research*, vol. 263, pp. 74–79, 2018.

423 [11] L. Jeong, M. Lee, B. Eyre, A. Balagopalan, F. Rudzicz, and 483
 424 C. Gabilondo, "Exploring the use of natural language processing 484
 425 for objective assessment of disorganized speech in schizophrenia," 485
 426 *Psychiatric Research and Clinical Practice*, vol. 5, no. 3, 486
 427 pp. 84–92, 2023.

428 [12] Q. Zhao, W.-Q. Wang, H.-Z. Fan, D. Li, Y.-J. Li, Y.-L. Zhao, Z.- 487
 429 X. Tian, Z.-R. Wang, Y.-L. Tan, and S.-P. Tan, "Vocal acoustic 488
 430 features may be objective biomarkers of negative symptoms in 489
 431 schizophrenia: A cross-sectional study," *Schizophrenia Research*, 490
 432 vol. 250, pp. 180–185, 2022.

433 [13] V. Raithel and M. Hielscher-Fastabend, "Emotional and linguistic 491
 434 perception of prosody: Reception of prosody," *Folia Phoniatrica 492
 435 et Logopaedica*, vol. 56, no. 1, pp. 7–13, 2004.

436 [14] M. A. Knoll, M. Uther, and A. Costall, "Effects of low-pass filtering 493
 437 on the judgment of vocal affect in speech directed to infants, 494
 438 adults and foreigners," *Speech Communication*, vol. 51, no. 3, pp. 495
 439 210–216, 2009.

440 [15] H. Ding and Y. Zhang, "Speech prosody in mental disorders," *Annual 496
 441 Review of Linguistics*, vol. 9, no. 1, pp. 335–355, 2023.

442 [16] V. Lucarini, M. Grice, F. Cangemi, J. T. Zimmermann, C. March- 497
 443 esi, K. Vogeley, and M. Tonna, "Speech prosody as a bridge 498
 444 between psychopathology and linguistics: the case of the 499
 445 schizophrenia spectrum," *Frontiers in psychiatry*, vol. 11, p. 500
 446 531863, 2020.

447 [17] V. P. Bozikas, M. H. Kosmidis, D. Anezoulaki, M. Giannakou, 501
 448 C. Andreou, and A. Karavatos, "Impaired perception of affective 502
 449 prosody in schizophrenia," *The Journal of neuropsychiatry and 503
 450 clinical neurosciences*, vol. 18, no. 1, pp. 81–85, 2006.

451 [18] S. D. Targum, "Evaluating rater competency for cns clinical trials," 504
 452 *Journal of clinical psychopharmacology*, vol. 26, no. 3, pp. 505
 453 308–310, 2006.

454