

1 **Beyond Single Ground Truth: Reference Monism as Epistemic Injustice in ASR**
2 **Evaluation**
3

4 **ANONYMOUS AUTHOR(S)**
5

6 Automatic speech recognition (ASR) evaluation compares system output to ground truth transcripts, with Word Error Rate (WER)
7 quantifying the distance between them. But ground truth transcripts are not discovered – they are produced by human annotators
8 following conventions that encode normative assumptions about which speech features matter. Different conventions (verbatim,
9 non-verbatim, legal) produce different transcripts of identical speech and judge the same ASR output differently. This paper argues
10 that **reference monism** – enforcing a single transcription convention as ground truth – commits **epistemic injustice**. Speakers with
11 aphasia, whose speech includes clinically meaningful disfluencies, are systematically disadvantaged when evaluated against “clean”
12 references that treat those disfluencies as errors. The harm is not merely differential performance, but that evaluative infrastructure
13 lacks interpretive resources to recognize their contributions as legitimate. We develop a philosophical framework introducing the
14 *hermeneutical gap*, formalize *Epistemic Injustice Distance* (EID) to measure reference monism’s cost, and demonstrate empirically
15 using AphasiaBank that WER varies depending on which convention defines ground truth. We propose **WER-Range**: reporting
16 performance across legitimate conventions rather than assuming a single correct answer.
17
18

19 CCS Concepts: • **Human-centered computing** → **Accessibility design and evaluation methods**; • **Computing methodologies**
20 → **Speech recognition; Philosophical/theoretical foundations of artificial intelligence**.
21

22 Additional Key Words and Phrases: automatic speech recognition; epistemic injustice; evaluation practices; transcription conventions
23

24 **ACM Reference Format:**
25

26 Anonymous Author(s). 2026. Beyond Single Ground Truth: Reference Monism as Epistemic Injustice in ASR Evaluation. In *Proceedings*
27 of 2026 ACM Conference on Fairness, Accountability, and Transparency (FAccT ’26). ACM, New York, NY, USA, 25 pages. <https://doi.org/XXXXXXX.XXXXXXX>
28
29

30 **1 Introduction**
31

32 How should we evaluate Automatic Speech Recognition (ASR) systems? ASR systems mediate access to essential
33 services – voice assistants transcribe queries, clinical documentation systems record patient encounters, accessibility
34 tools caption lectures and meetings. As these systems become infrastructure, their evaluation practices determine whose
35 speech is deemed “recognizable” as-is and whose speech is treated as a problem to be solved. The standard methodology
36 appears straightforward: a system produces a hypothesis; evaluators compare it to a ground truth transcript; Word Error
37 Rate (WER) quantifies the distance between them. Lower is better. This framework underlies benchmark construction,
38 fairness audits, and deployment decisions [8, 12, 24].¹ We focus specifically on *evaluation practices*: how researchers,
39 auditors, and developers assess system quality. This is distinct from questions about what transcripts ASR systems
40
41

42
43 ¹WER dominates contemporary ASR evaluation, evidenced by its status as the sole quality metric on the Open ASR Leaderboard: https://huggingface.co/spaces/hf-audio/open_asr_leaderboard
44

45 Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
46 made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
47 of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
48 servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
49

50 © 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.
51

52 Manuscript submitted to ACM
53
54 Manuscript submitted to ACM

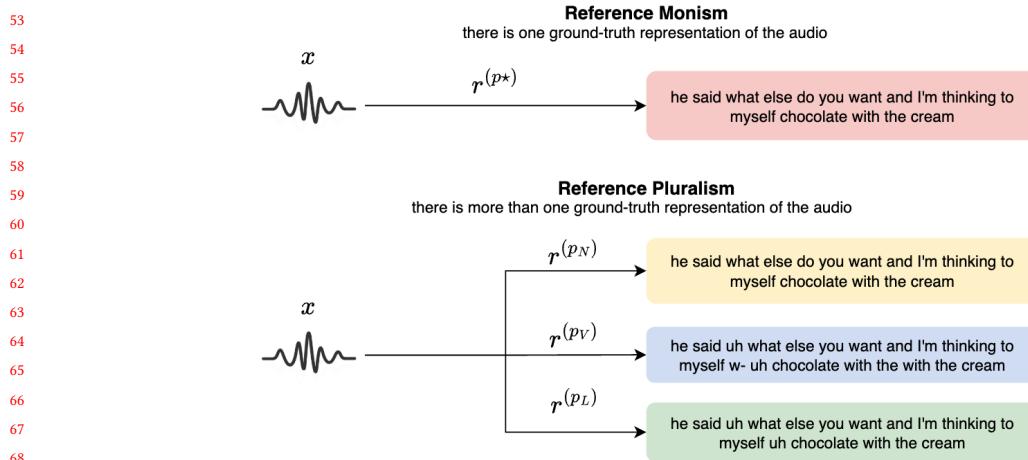


Fig. 1. Reference monism enforces a single transcription convention as ground truth, while reference pluralism recognizes multiple legitimate interpretations of the same utterance. This example from AphasiaBank shows how the same speech can be transcribed as: *non-verbatim* (yellow): “he said what else do you want and I’m thinking to myself chocolate with the cream” – removes all fillers (“uh”), fragments (“w-”), and repairs (“with the with the”), and normalizes grammar (adds “do”); *verbatim* (blue): “he said uh what else you want and I’m thinking to myself w- uh chocolate with the with the cream” – preserves all disfluencies exactly as spoken, including fillers, incomplete words, and self-corrections; *legal* (green): “he said uh what else you want and I’m thinking to myself uh chocolate with the cream” – maintains fillers that may indicate hesitation but removes fragments and normalizes repairs. Each convention serves legitimate purposes; enforcing one as the sole evaluation standard systematically disadvantages speakers whose communicative practices diverge from that convention.

should produce for end users – a system may legitimately output clean text for accessibility applications while being evaluated against multiple reference conventions to ensure fair assessment across speaker populations.

But ground truth transcripts are not discovered but constructed – a Kantian insight about the nature of knowledge [22, 23]: we do not passively apprehend speech events as objective facts, but actively constitute them through interpretive frameworks. Ground truth transcripts are produced by human annotators following conventions that encode normative assumptions about which features of speech matter. As Bucholtz [5] argues, transcription is inherently political: choices about what to preserve, normalize, or exclude reflect and reproduce power relations between speakers and institutions. A verbatim transcript preserves fillers, false starts, and repairs. A non-verbatim transcript removes these, producing “clean” text. A legal transcript preserves hedges relevant for evidentiary purposes.² Each convention serves legitimate purposes, produces a different transcript of the same utterance, and judges the same ASR output differently, as shown in Figure 1.

This paper argues that *reference monism* – the enforcement of a single transcription convention as ground truth – commits epistemic injustice [15]. Speakers with aphasia, whose speech is characterized by clinically meaningful disfluencies, are a clear case: they are penalized when evaluated against “clean” references that treat those disfluencies as errors. The harm is not merely that systems perform worse on these populations, but that the evaluative infrastructure itself lacks resources to recognize their contributions as legitimate.

Prior work has documented substantial ASR performance disparities across racial groups [24], dialects [44], age groups [41], and clinical populations [14, 32, 45]. Philosophical analysis of these disparities has identified ASR evaluation

²These convention types follow typical transcription standards. See Rev AI transcription guidelines <https://www.rev.com/resources/verbatim-transcription-and-legal-transcription-standards> and legal transcription standards <https://www.legallanguage.com/legal-articles/the-4-rules-of-legal-transcription/>.

105 as a site of epistemic harm [6], yet these studies measure disparity against a fixed ground truth, attributing gaps to
 106 model limitations addressable through improved training data or architecture. Our contribution is orthogonal: we show
 107 that the choice of ground truth itself structures measured disparities, and that convention choice can be a source of
 108 injustice independent of model performance. Separately, a growing literature treats annotator disagreement as signal
 109 rather than noise [4, 35], asking how to aggregate diverse judgments or preserve disagreement information. Where
 110 that work examines variation *within* a convention (annotators following the same guidelines may still disagree), we
 111 examine variation *across* conventions that legitimately produce systematically different labels. These perspectives
 112 are complementary: plural ground truth adds a dimension – an interpretive framework – that disagreement-aware
 113 approaches do not yet address.

114 Recent empirical work provides direct precedent for our theoretical claims. McNamara et al. [31] demonstrated that
 115 identical ASR output scores dramatically differently under verbatim versus non-verbatim references, showing WER
 116 variation for the same system-utterance pair; they note that machine translation adopted multi-reference evaluation
 117 decades ago, yet ASR has resisted this pluralism. Heuser et al., [21] showed that transcription style choices – not
 118 acoustic modeling – drive substantial measured disparities for African American English (AAE) speakers, with human
 119 transcribers’ convention choices accounting for more variation than ASR system differences. These findings motivate
 120 the present work: we provide the philosophical framework explaining *why* single-reference evaluation constitutes
 121 epistemic injustice and formalize **how** to measure its cost.

122 We develop this argument in three stages: (i) **a philosophical framework** introducing the *hermeneutical gap*
 123 between speakers’ contributions and conventions’ interpretive resources; (ii) **a formalization** defining Epistemic
 124 Injustice Distance (EID) and Δ EID to measure the cost of reference monism; and (iii) **empirical demonstration** using
 125 AphasiaBank [30], showing that WER varies by nearly a factor of two depending on which convention defines ground
 126 truth. Our practical recommendation is **WER-Range, a reporting practice** that reports performance across legitimate
 127 conventions rather than collapsing plurality into a single number.

128 2 Philosophical Groundwork

129 While ASR fairness audits have proliferated [24, 25, 32, 37, 45, 46], and benchmark criticism has identified validity
 130 concerns in AI evaluation generally [1, 12, 27, 38, 39, 42], no prior work has examined how the *interpretive framework*
 131 defining ground truth structures measure disparities.

132 We draw on three philosophical traditions to argue that ASR evaluation commits a distinctive form of harm: *epistemic*
 133 *injustice*. This section introduces the core concepts; fuller elaboration appears in Appendix A.

134 2.1 Epistemic Injustice

135 Miranda Fricker [15] identifies harms done to individuals *in their capacity as knowers* – what she calls **epistemic**
 136 **injustice**. Unlike material or dignitary harms, epistemic harms damage one’s ability to participate in knowing and
 137 communicating knowledge. Fricker distinguishes two forms:

138 **Testimonial injustice** occurs when a speaker receives a *credibility deficit* – their testimony is judged less believable
 139 than warranted – due to prejudice rather than deficiency in the testimony itself. The wrong is being disbelieved *because*
 140 *of who you are* rather than *what you said*.

141 **Hermeneutical injustice** occurs when someone lacks the interpretive resources – concepts, vocabulary, frameworks
 142 – needed to make sense of their own experience, due to marginalization from collective meaning-making processes.
 143 Fricker’s paradigm case is sexual harassment before the 1970s: women experiencing unwanted advances had inadequate

157 collective frameworks to make their experience socially intelligible. They recognized the mistreatment but lacked
 158 shared vocabulary to articulate it in ways dominant institutions would acknowledge. The experience remained “barely
 159 intelligible” not because nothing happened, but because collective hermeneutical resources lacked adequate interpretive
 160 tools. The wrong is being disbelieved because of who you are rather than what you said. Dotson [10] distinguishes
 161 testimonial *quieting* (external rejection of testimony) from testimonial *smothering* (preemptive self-censorship anticipating
 162 low credibility). Harrington et al. [20] document both in ASR: Black older adults explicitly described consciously
 163 modifying their speech as “code-switching” to be understood by voice assistants – testimonial smothering operating
 164 before systems can reject their natural speech.
 165

166 Crucially, a gap in *collective* resources does not mean no one has adequate tools. Goetze [19] identifies **hermeneutical**
 167 **dissent**: cases where marginalized groups *have* developed interpretive tools despite exclusion from dominant
 168 meaning-making. When such tools exist within a community but have not spread to other groups, Goetze terms this
 169 **hermeneutical ghettoization** – community members understand their own experiences but cannot communicate
 170 them to outsiders who lack the interpretive resources. As we argue below, this precisely describes clinical speech
 171 communities and speakers of non-standard dialects vis-à-vis ASR systems.
 172

173 2.2 Structural Injustice and Willful Ignorance

174 Anderson [2] argues that individual epistemic virtue – cultivating sensitivity to one’s prejudices – is insufficient when
 175 epistemic injustice is embedded in social institutions. Just as individual charity cannot remedy structural poverty,
 176 individual open-mindedness cannot remedy institutionalized hermeneutical gaps. This institutional perspective proves
 177 essential for ASR: the hermeneutical gaps in speech recognition are embedded in *institutions* – transcription conventions
 178 developed without input from marginalized communities, benchmark datasets reflecting demographic biases, evaluation
 179 metrics presupposing a single correct transcription, and publication and policy norms rewarding standard-benchmark
 180 performance [12, 38, 39].

181 This institutional perspective proves essential for ASR: hermeneutical gaps are embedded in transcription conventions
 182 developed without marginalized input [24], benchmark datasets with demographic biases, evaluation metrics
 183 presupposing single correct transcriptions, and norms rewarding standard-benchmark performance [? ?]. Notably,
 184 initiatives like Mozilla Common Voice [3] explicitly recognize these limitations, foregrounding community participation
 185 and documentation rather than treating conventions as neutral.

186 Pohlhaus [36] introduces **willful hermeneutical ignorance**: when dominant groups actively resist acquiring
 187 interpretive resources that marginalized communities have developed. Unlike simple hermeneutical injustice (gaps
 188 exist because no one developed adequate concepts), willful ignorance involves *refusal* to adopt available tools. Clinical
 189 speech transcription conventions exist; sociolinguistic descriptions of AAE phonology are well-documented; disability
 190 communities have articulated communication norms for diverse speakers. Recent work by Rev AI demonstrates that
 191 commercial providers can incorporate diverse transcription conventions when motivated [21], yet such efforts remain
 192 exceptional rather than standard practice. The continued absence of these resources from mainstream ASR evaluation is
 193 not mere oversight but structural refusal to expand the interpretive frameworks that determine what counts as accurate
 194 transcription.

195 2.3 The Impossibility of Context-Free Ground Truth

196 Hubert Dreyfus [11] and Lucy Suchman [40] argue that human expertise operates through tacit, contextual judgment
 197 that cannot be captured in explicit rules. Expert transcribers do not apply algorithms; they exercise holistic pattern
 198

199 Manuscript submitted to ACM

200

201

202

203

204

205

206

207

208

recognition shaped by purpose, context, and background. Love and Wright [29] demonstrated this: eight trained forensic transcribers produced substantially different transcripts of identical audio, with variations including different verbs ('said' vs. 'was thinking') and pronouns ('he' vs. 'it' vs. 'I') – not "errors" but different legitimate interpretive stances under acoustic uncertainty. The assumption that transcription can be evaluated against a single, purpose-independent ground truth ignores this fundamental context-dependence. The assumption that transcription can be evaluated against a single, purpose-independent ground truth ignores this fundamental context-dependence. When trained transcribers disagree, they are not making "errors" relative to an objective standard; they are exercising different legitimate interpretive stances. This claim concerns disagreements arising from different transcription policies, not expertise asymmetries where one transcriber has domain knowledge the other lacks – such as familiarity with dialectal features or regional terminology. Aggregating their judgments yields consensus, not objectivity.

Hans-Georg Gadamer [16] argued that all understanding operates through *prejudices* (Vorurteile) – pre-judgments constituting the interpreter's "horizon." These are not obstacles but enabling conditions: we make sense of something new by relating it to what we already understand. Applied to transcription, every ground truth embeds prejudices about what speech "really says": training data reflecting assumptions about "standard" speech, conventions treating disfluencies as deviations rather than legitimate acts, and metrics presupposing a single correct answer. These prejudices are not necessarily illegitimate – conventions serve genuine purposes – but they become sources of injustice when naturalized as objective standards rather than recognized as contestable choices.

2.4 The Hermeneutical Gap

Drawing these traditions together, we introduce the **hermeneutical gap**: the distance between a speaker's communicative contribution and the interpretive resources available in transcription conventions to render that contribution intelligible. For speakers of prestige dialects whose patterns align with conventions developed from and for their communities, the gap is minimal. For speakers of marginalized varieties – marked by race, disability, class, or region – the gap widens, and meaning is lost, distorted, or erased.

The hermeneutical gap is not a property of speakers but of *evaluative frameworks*. It measures not how "clearly" someone speaks but how well the interpretive infrastructure accommodates their communicative practices. A speaker with aphasia communicates meaningfully within clinical contexts where verbatim conventions preserve disfluencies as diagnostically significant – both the speaker's actual production and its transcription representation are valued for what they reveal about language processing. The same speaker appears to communicate poorly when evaluated against "clean" standards treating disfluencies as errors. The gap lies not in the speaker but in the mismatch between their production patterns and the interpretive frameworks (whether computational or conventional) used to render those patterns as text.

This concept synthesizes our philosophical resources: the gap constitutes hermeneutical injustice (Fricker) when it results from marginalization; it reflects ghettoization (Goetze) when marginalized communities have developed conventions that dominant frameworks fail to incorporate; its persistence despite available resources constitutes willful ignorance (Pohlhaus) at an institutional rather than individual level; and it reflects unacknowledged prejudices (Gadamer) that, once recognized, become contestable normative choices. The hermeneutical gap provides a diagnostic tool for identifying where ASR evaluation commits epistemic injustice – not through technical failure but through interpretive poverty.

261 2.5 From Diagnosis to Measurement

262 The philosophical framework identifies *what* epistemic injustice in ASR evaluation consists in. But diagnosis alone does
 263 not tell us *how much* injustice occurs, *where* it falls, or *how* to detect it empirically. The following section develops
 264 a formal framework that operationalizes these concepts. We define a quantity that measures the evaluation cost of
 265 enforcing a single convention when others would judge the same output more favorably. The key interpretive move
 266 – what we call the **Fricker bridge** – is this: when this quantity differs across speaker groups, we have quantitative
 267 evidence of the structural burden that hermeneutical injustice predicts. Philosophy tells us what to look for; the
 268 formalization tells us how to measure it. The relationship between EID and conventional fairness metrics (demographic
 269 parity, equalized odds) is elaborated in Appendix C, where we show that these analyses operate at complementary
 270 levels.

274 275 3 Formalizing the Hermeneutical Gap

276 The philosophical framework developed in §2 identifies hermeneutical injustice as occurring when interpretive resources
 277 are inadequate to render certain speakers’ contributions intelligible. We now operationalize this concept for ASR
 278 evaluation, developing a formal framework that transforms philosophical critique into empirically tractable claims.

281 3.1 Notation: Speech, Conventions, and References

282 Let \mathcal{X} be the space of audio segments x . Let $g \in G$ denote a speaker group (e.g., control/aphasia, or dialect groups such
 283 as AAE. Let P be a set of **transcription policies** – systematic choices about how to render speech as text. Examples
 284 include: $p_V = \text{verbatim}$: preserve fillers (“um,” “uh”), repairs, false starts; $p_C = \text{clean}$: remove disfluencies, normalize to
 285 written conventions; $p_D = \text{domain-specific}$: legal or medical transcription.

287 For each policy $p \in P$, define a **reference transcript function**:

$$289 \quad r^{(p)} : \mathcal{X} \rightarrow \mathcal{Y} \quad (1)$$

291 where \mathcal{Y} is the space of text strings. The function $r^{(p)}$ encodes how a trained annotator following policy p would
 292 transcribe audio x . Let $h : \mathcal{X} \rightarrow \mathcal{Y}$ be an ASR system (or “hypothesis generator”), producing output $h(x)$ for input x .

294 **Key ontological move:** We do not posit a single “true transcription” that conventions approximate with varying
 295 fidelity. Instead, we treat the reference as *constitutively* dependent on the convention. The “ground truth” is not
 296 discovered but *constructed* through the choice of p .

298 3.2 Plural Ground Truth

299 For an utterance x , define the **legitimate reference set**:

$$301 \quad R(x) := \{r^{(p)}(x) \mid p \in P\} \quad (2)$$

303 This set contains all transcriptions that could legitimately serve as ground truth, given different but defensible
 304 choices about transcription policy. $R(x)$ is not a set of approximations, but it is the set of *equally valid interpretations* of
 305 the speech event.

307 **Gadamerian interpretation:** $R(x)$ encodes multiple “horizons” of transcription – different a priori understandings
 308 about what features of speech are worth preserving in text. No element of $R(x)$ is privileged a priori; each represents a
 309 legitimate hermeneutical standpoint. The assumption that one element is uniquely “correct” reflects not objective fact
 310 but the dominance of one interpretive tradition.

313 Connection to hermeneutical dissent: When marginalized communities develop their own transcription conventions – as clinical speech pathologists have for aphasic speech, or as researchers working with dialectal communities³ –
314 these conventions constitute elements of $R(x)$ that may not be recognized by dominant evaluation frameworks. The
315 existence of such conventions means that the interpretive resources *exist*; the question is whether they are *incorporated*
316 into evaluation.

319 3.3 Reference Monism Costs

320 Standard ASR evaluation practice selects a single policy p^* and evaluates all systems against it:

$$323 \quad 324 \quad \text{WER}(h(x), r^{(p^*)}(x)) = \frac{S + D + I}{N} \quad (3)$$

325 where S, D, I are substitutions, deletions, and insertions, and $N = |r^{(p^*)}(x)|$ is the word count of the reference.

326 We term this practice **reference monism**: the enforcement of a single interpretive scheme as the standard against
327 which all outputs are measured. Reference monism is not a technical necessity but a *normative choice* – one that is
328 typically made implicitly through benchmark construction, institutional requirements, or product specifications. The
329 cost of reference monism becomes visible when we observe that the *same hypothesis* $h(x)$ receives different evaluation
330 scores under different policies:

$$333 \quad 334 \quad \text{WER}(h(x), r^{(p_1)}(x)) \neq \text{WER}(h(x), r^{(p_2)}(x)) \quad \text{for } p_1 \neq p_2 \quad (4)$$

335 We now define a quantity that measures the cost of reference monism for a particular speaker group. Let p^* be the
336 dominant reference policy enforced by a benchmark or institution. Define the Epistemic Injustice Distance (EID) for
337 group g under monist policy p^* :

$$340 \quad 341 \quad \text{EID}_g(h; p^*) := \mathbb{E}_{x \sim D_g} \left[\text{WER}(h(x), r^{(p^*)}(x)) - \min_{p \in P} \text{WER}(h(x), r^{(p)}(x)) \right] \quad (5)$$

342 where D_g is the distribution of audio segments from group g .

343 **Interpretation:** EID measures the *extra penalty* that group g incurs because evaluation enforces policy p^* , even
344 when other legitimate policies in P would judge the system's output more favorably. It is the cost of collapsing the
345 legitimate reference set $R(x)$ to a single element $r^{(p^*)}(x)$.

346 EID has three key properties: (1) Non-negativity: $\text{EID}_g(h; p^*) \geq 0$ always, since the enforced policy cannot perform
347 better than the best-case policy. (2) Policy-dependence: EID depends on which convention p^* is enforced – policies
348 aligning with group g 's communicative norms yield lower EID. (3) Avoidability: If evaluation accepted any legitimate
349 reference, EID would be zero by construction, revealing that this burden exists only because institutions enforce a
350 single interpretive framework when multiple legitimate ones are available.

354 3.4 Fricker Bridge

355 EID measures the cost of reference monism for a single group, but to connect this to epistemic *injustice*, we must
356 compare across groups. Define the **comparative injustice quantity** as:

$$359 \quad \Delta\text{EID}(g, g'; h; p^*) := \text{EID}_g(h; p^*) - \text{EID}_{g'}(h; p^*) \quad (6)$$

360
361 ³We note an important complexity: conventions developed by sociolinguists studying a variety may not perfectly align with how speakers of that variety
362 would represent their own speech. The question of who has authority to define transcription conventions – trained linguists, community members,
363 or collaborative processes – is itself a site of potential epistemic injustice that our framework highlights but does not resolve. This recalls ongoing
364 discussions about descriptive versus prescriptive authority in language documentation.

If $\Delta\text{EID}(g, g'; h; p^*) > 0$, then group g bears a *structural evaluation burden* from reference monism that group g' does not bear. This burden is not merely “performance disparity” in the technical sense – it is a systematic distortion of how group g ’s speech is recorded and credited, produced by restricting the interpretive resources that evaluation recognizes.

ΔEID operationalizes hermeneutical injustice as a measurable disparity. When $\Delta\text{EID} > 0$, group g ’s communicative contributions are evaluated against a standard that lacks adequate interpretive resources for their speech patterns (hermeneutical injustice); group g receives systematically lower credibility assessments than their speech warrants under their own community’s conventions (testimonial injustice as downstream effect); and the burden falls on speakers whose conventions diverge from p^* , compounding historical marginalization (Hellman’s compounding injustice).

3.5 Operationalizing the Hermeneutical Gap

We can now give precise meaning to the hermeneutical gap concept introduced in §2. Recall that the hermeneutical gap measures the interpretive distance between a speaker’s communicative contribution and the resources available in a transcription convention to render it intelligible.

The hermeneutical gap can be understood as the *distance between the dominant convention and the convention most aligned with the speaker’s community*. Let $p_g \in P$ be the policy that best represents group g ’s transcription norms (e.g., verbatim clinical conventions for aphasic speakers). Then:

$$\mathcal{H}(g, p^*) := \mathbb{E}_{x \sim D_g} \left[\left| r^{(p^*)}(x) - r^{(p_g)}(x) \right| \right] \quad (7)$$

where $|\cdot|$ denotes edit distance (or another string distance metric).

The hermeneutical gap measures convention distance *independent of any ASR system*; EID measures the *evaluation cost* of that gap for a particular system. A large hermeneutical gap creates the *potential* for epistemic injustice; EID measures the *realized* injustice when a system is evaluated under reference monism.

This relationship is not deterministic: a system specifically optimized for group g under policy p^* might achieve low EID despite a large hermeneutical gap. But for systems trained on standard corpora under standard conventions, the gap predicts the distance.⁴

4 Empirical Evidence

We apply the formal framework developed above to a concrete case: evaluating ASR systems on clinical speech from the AphasiaBank corpus.

4.1 Experimental Setup

4.1.1 Dataset. We use speech samples from the AphasiaBank English Protocol dataset [30], a corpus of semi-structured interviews with individuals with aphasia and neurotypical control participants. From the full corpus (~ 389 hours), we constructed a stratified test set of 8 hours 58 minutes comprising 29 control speakers and 30 speakers with aphasia (18 fluent, 12 non-fluent), sampled proportionally across clinical status, age group (<40 , $40-59$, $60-79$), and gender (see Appendix B.1 for composition details). Aphasic speech is characterized by disfluencies including filled pauses, false starts, word-finding delays, phonemic paraphasias, and self-repairs. These features are *clinically meaningful* – they inform diagnosis, track recovery, and characterize aphasia subtypes. Whether they should be preserved in transcription depends on the transcription’s purpose.

⁴We distinguish EID from machine learning fairness metrics in terms of the *unit of analysis*, as detailed in Appendix C.2.

417 4.1.2 *Transcription Policies.* We instantiate the policy set P with three transcription conventions, each produced by
 418 trained human annotators (Revvers) following Rev AI’s annotation guidelines:
 419

- 420 (1) p_V : **Verbatim** – preserves all spoken content including fillers (“um,” “uh”), false starts, repetitions, and repairs.
 421 Annotators transcribe exactly what was said.
- 422 (2) p_N : **Non-Verbatim** – removes disfluencies, normalizes grammar, produces “clean” readable text reflecting
 423 intended meaning rather than literal production.
- 424 (3) p_L : **Legal** – preserves hedges, qualifications, and exact phrasing relevant for evidentiary purposes, but may
 425 normalize obvious speech errors.

426 For each utterance x in the test set, we thus have a legitimate reference set:

$$427 \quad 428 \quad 429 \quad 430 \quad 431 \quad 432 \quad 433 \quad 434 \quad 435 \quad 436 \quad 437 \quad 438 \quad 439 \quad 440 \quad 441 \quad 442 \quad 443 \quad 444 \quad 445 \quad 446 \quad 447 \quad 448 \quad 449 \quad 450 \quad 451 \quad 452 \quad 453 \quad 454 \quad 455 \quad 456 \quad 457 \quad 458 \quad 459 \quad 460 \quad 461 \quad 462 \quad 463 \quad 464 \quad 465 \quad 466 \quad 467 \quad 468 R(x) = \{r^{(p_V)}(x), r^{(p_N)}(x), r^{(p_L)}(x)\} \quad (8)$$

431 All three conventions represent legitimate transcription practices used in professional contexts. None is objectively
 432 “correct”; each serves different downstream purposes.

433 4.1.3 *ASR Systems.* We evaluate seven ASR configurations spanning commercial and open-source systems. We selected
 434 systems that vary along two dimensions: commercial vs. open-source architecture, and implicit vs. explicit convention
 435 control. Rev AI, unlike most ASR providers, offers multiple output modes corresponding to distinct transcription
 436 conventions: verbatim (preserving fillers, false starts, repairs), non-verbatim (clean, readable text), and legal (preserving
 437 hedges and qualifications).⁵ This explicit convention control makes Rev AI uniquely suited for our analysis – the same
 438 speech can be transcribed under different conventions by the same provider, controlling for acoustic modeling and
 439 architecture. We evaluate Rev AI v2 (verbatim, non-verbatim) and Rev AI v3 (verbatim, non-verbatim, legal), yielding
 440 five configurations.

441 For comparison, we include Whisper-large-v3,⁶ which represents widely-adopted open-source ASR and tends toward
 442 clean transcription, and CrisperWhisper,⁷ fine-tuned specifically to preserve disfluencies for clinical applications.
 443 Neither offers explicit convention selection; their outputs reflect implicit transcription preferences baked into training.
 444 This selection enables us to examine both explicit convention control (Rev AI modes) and implicit convention alignment
 445 (Whisper variants), demonstrating that convention-dependence affects evaluation regardless of whether systems expose
 446 it as a user-facing parameter.

4.2 Results

453 Table 1 presents WER for selected ASR systems evaluated against each reference convention.

454 **Key observation 1: Convention-dependence is substantial.** For Rev.ai v2 (verbatim), WER ranges from 9.81% to
 455 17.38% depending solely on which reference is used – a 1.8× difference. The same system output that appears highly
 456 accurate (9.81%) under one convention appears substantially worse (17.38%) under another.

457 **Key observation 2: Systems optimize for specific conventions.** Each system achieves its best performance
 458 against the “matching” reference convention: verbatim systems score lowest on verbatim references, non-verbatim
 459 systems on non-verbatim references. This is not surprising – but it reveals that “accuracy” is not an intrinsic property
 460 of the system but a *relational property of the system-convention pairing*.

461 ⁵Rev AI API: <https://www.rev.ai/>

462 ⁶<https://huggingface.co/openai/whisper-large-v3>

463 ⁷<https://huggingface.co/nyrahealth/CrisperWhisper>

469 Table 1. WER (%) by ASR system and reference convention (overall test set). Bold indicates lowest WER for each system. Systems
 470 perform best when evaluated against “matching” conventions – verbatim systems against verbatim references, etc.

472	ASR System	Verbatim	Non-verbatim	Legal
		p_V	p_N	p_L
474	Rev AI v2 (verbatim)	9.81	17.38	10.46
475	Rev AI v2 (non-verbatim)	16.18	9.04	11.46
476	Rev AI v3 (verbatim)	10.60	17.83	11.94
477	Rev AI v3 (non-verbatim)	16.95	9.60	12.71
478	Rev AI v3 (legal)	16.00	14.76	10.96
479	Whisper-large-v3	23.85	19.19	20.48
480	CrisperWhisper	29.67	30.65	26.20

482 **Key observation 3: The edit operation profile shifts.** Table 2 shows how the composition of errors changes across
 483 conventions. Under verbatim reference, errors are balanced across operation types. Under non-verbatim reference,
 484 *insertions* dominate (12.26%) – the system is penalized for producing disfluencies that the reference excludes. The same
 485 system behavior (preserving disfluencies) counts as “correct” under one convention and “erroneous” under another.
 486 *What counts as an error depends on the convention.*

490 Table 2. Edit operation breakdown (%) for Rev AI v2 (verbatim) across reference conventions

492	Reference	WER	Insertions	Deletions	Substitutions
494	Verbatim (p_V)	9.81%	2.18%	2.81%	4.82%
495	Non-verbatim (p_N)	17.38%	12.26%	1.30%	3.82%
496	Legal (p_L)	10.46%	4.84%	2.33%	3.30%

499 Table 3. WER (%) by speaker group and reference convention

502	ASR System	Group	Verbatim	Non-verbatim	Legal
504	Rev AI v2 (verbatim)	Control	4.03	8.76	5.71
		Fluent aphasia	14.95	26.06	13.92
		Non-fluent aphasia	17.53	30.44	19.60
508	Rev AI v3 (verbatim)	Control	7.76	11.65	9.30
		Fluent aphasia	18.85	28.72	18.72
		Non-fluent aphasia	24.51	32.40	26.43
510	Rev AI v3 (non-verbatim)	Control	11.75	7.77	9.32
		Fluent aphasia	26.26	17.05	21.68
		Non-fluent aphasia	35.35	21.61	26.06

513 **4.2.1 Per Speaker Group.** Table 3 disaggregates results by clinical status, revealing that convention-dependence is not
 514 uniform across groups. Consider Rev AI v2 (verbatim):

- 516 • Under verbatim reference: gap between control and non-fluent = $17.53 - 4.03 = 13.50$ pp
- 517 • Under non-verbatim reference: gap between control and non-fluent = $30.44 - 8.76 = 21.68$ pp
- 518 • Under legal reference: gap between control and non-fluent = $19.60 - 5.71 = 13.89$ pp

521 **Key observation 4: The fairness gap depends on convention.** The “fairness gap” between speaker groups is not
 522 fixed – it varies by 60% (from 13.50 to 21.68 pp) depending on which convention is enforced. A system that appears
 523 “moderately unfair” under one convention appears “severely unfair” under another. *The choice of convention determines*
 524 *not just absolute performance but relative fairness across groups.*

525 Complete WER matrices, edit operation breakdowns, per-group results for all systems, and inter-reference distance
 526 calculations operationalizing the hermeneutical gap are provided in Appendix B.

529 4.3 Computing EID

531 We now compute EID for each speaker group, demonstrating how reference monism imposes differential burdens. We
 532 treat non-verbatim transcription (p_N) as the dominant enforced policy p^* , reflecting common evaluation practice that
 533 favors “clean” references. For each group g , we compute:

$$536 \quad EID_g(h; p_N) = WER(h, r^{(p_N)}) - \min_{p \in \{p_V, p_N, p_L\}} WER(h, r^{(p)}) \quad (9)$$

537 Consider Rev AI v2 (verbatim) as an illustrative case. Under non-verbatim evaluation, control speakers achieve 8.76%
 538 WER against the enforced reference but only 4.03% against their best-case reference (verbatim), yielding EID of 4.73
 539 pp. Fluent aphasic speakers show 26.06% WER under enforcement versus 13.92% at best (legal), for EID of 12.14 pp.
 540 Non-fluent aphasic speakers fare worst: 30.44% WER under enforcement versus 17.53% at best (verbatim), yielding EID
 541 of 12.91 pp – nearly three times the burden borne by control speakers.

542 Computing ΔEID :

$$544 \quad \Delta EID(\text{non-fluent, control}; h; p_N) = 12.91 - 4.73 = 8.18 \text{ pp} \quad (10)$$

545 **Normative reading:** Speakers with non-fluent aphasia bear an additional 8.18 percentage point penalty from
 546 reference monism compared to control speakers. This is the *structural evaluation burden* – not a performance disparity
 547 in the usual sense, but a systematic penalty imposed by the choice to enforce non-verbatim conventions on speech that
 548 is inherently disfluent.

554
 555 Table 4. EID by speaker group and ΔEID across ASR systems (enforced policy: non-verbatim). EID in percentage points (pp). Higher
 556 EID indicates greater structural burden from reference monism. Positive ΔEID indicates non-fluent speakers bear greater burden than
 557 control speakers.

558 ASR System	559 EID (Control)	560 EID (Fluent)	561 EID (Non-fluent)	562 ΔEID
560 Rev AI v2 (verbatim)	4.73 pp	12.14 pp	12.91 pp	8.18 pp
561 Rev AI v3 (verbatim)	3.89 pp	9.87 pp	7.89 pp	4.00 pp
562 Rev AI v3 (legal)	4.89 pp	6.69 pp	3.52 pp	-1.37 pp

563
 564
 565 Table 4 shows EID and ΔEID across multiple systems. **Key observation 5: EID depends on system-convention**
 566 **alignment.** When the ASR system is optimized for the enforced convention (Rev AI v3 non-verbatim evaluated against
 567 non-verbatim reference), EID is zero by construction – the enforced convention *is* the best convention for that system.
 568 But for systems optimized for other conventions, substantial EID emerges, and it falls disproportionately on aphasic
 569 speakers.

573 4.4 Fricker Bridge, Empirically

574 The positive ΔEID confirms our theoretical prediction: enforcing a single transcription convention commits hermeneutical injustice against speakers whose communicative practices diverge from that convention.

- 577 578 579 580 581 582 583 584 585 586 587 588 • **Hermeneutical ghettoization:** Clinical speech communities have developed transcription conventions that preserve disfluencies as meaningful (verbatim transcription is standard in clinical research). These conventions exist in P but are excluded when p_N is enforced as the evaluation standard.
- **Willful hermeneutical ignorance:** The interpretive resources to fairly evaluate aphasic speech *exist* – verbatim conventions produce dramatically lower WER for these speakers. The injustice arises from institutional practices that enforce non-verbatim conventions as the unmarked default.
- **The evaluation cost is quantifiable:** ΔEID of 8.18 pp means that non-fluent aphasic speakers are penalized by an additional 8 percentage points purely due to convention choice – a penalty that would disappear under pluralist evaluation.

590 5 Reporting with WER-Range

591 The results above demonstrate that no single WER number adequately characterizes system performance. The “accuracy” 592 of a system is not a fact but an artifact of convention choice. We propose an alternative: rather than collapsing the 593 legitimate reference set to a single ground truth, **report the range of WER values across legitimate conventions**.

594 For an ASR system h evaluated on dataset D with policy set P , define the **WER-Range**:

$$597 598 \text{WER-Range}(h, D, P) := \left[\min_{p \in P} \text{WER}_p, \max_{p \in P} \text{WER}_p \right] \quad (11)$$

599 Equivalently, report the **WER-Range**:

$$600 601 \text{WER-Set}(h, D, P) := \{(p, \text{WER}_p) : p \in P\} \quad (12)$$

602 Instead of reporting:

603 “Rev AI v2 (verbatim) achieves 9.81% WER on AphasiaBank.”

604 Report:

605 “Rev AI v2 (verbatim) achieves **WER-Range [9.81%, 17.38%]** on AphasiaBank across verbatim, non- 606 verbatim, and legal transcription conventions.”

607 Or more informatively:

608 “Rev AI v2 (verbatim) achieves WER-Set {9.81% (verbatim), 10.46% (legal), 17.38% (non-verbatim)} on 609 AphasiaBank.”

610 Table 5 presents WER-Range for all evaluated systems and, for Rev AI v2 (verbatim), disaggregated by speaker 611 group. Range width varies across systems: Rev AI v3 (legal) shows the narrowest range among Rev systems (5.04 pp), 612 suggesting more robust performance across conventions, while CrisperWhisper shows the narrowest absolute range 613 (4.45 pp) but at higher overall WER – it performs similarly (poorly) across all conventions.

614 Disaggregating by speaker group reveals differential vulnerability to convention choice. Non-fluent aphasic speakers 615 have a WER-Range width of 12.91 pp – nearly three times the width of control speakers (4.73 pp). This means aphasic 616 speakers are *more vulnerable to convention choice*: their apparent “accuracy” fluctuates more depending on which 617 standard is enforced. This differential vulnerability is invisible to single-number reporting but captured by WER-Range.

625 Table 5. WER-Range by ASR system (top) and by speaker group for Rev AI v2 verbatim (bottom). Range width measures vulnerability
 626 to convention choice; wider ranges indicate greater sensitivity to which standard defines ground truth.

628 ASR System	629 WER-Range	630 Range Width
631 Rev AI v2 (verbatim)	632 [9.81%, 17.38%]	633 7.57 pp
634 Rev AI v2 (non-verbatim)	635 [9.04%, 16.18%]	636 7.14 pp
637 Rev AI v3 (verbatim)	638 [10.60%, 17.83%]	639 7.23 pp
639 Rev AI v3 (non-verbatim)	640 [9.60%, 16.95%]	641 7.35 pp
641 Rev AI v3 (legal)	642 [10.96%, 16.00%]	643 5.04 pp
642 Whisper-large-v3	643 [19.19%, 23.85%]	644 4.66 pp
643 CrisperWhisper	644 [26.20%, 30.65%]	645 4.45 pp
646 Speaker Group	647 WER-Range	648 Range Width
649 Control	650 [4.03%, 8.76%]	651 4.73 pp
651 Fluent aphasia	652 [13.92%, 26.06%]	653 12.14 pp
653 Non-fluent aphasia	654 [17.53%, 30.44%]	655 12.91 pp

641 Note that range width equals EID when non-verbatim is the worst-case convention – which it is for verbatim-optimized
 642 systems evaluating disfluent speech.

643 We address potential objections – including why WER averaging or cross-dataset evaluation don't serve the same
 644 purpose – in Appendix C.3

648 6 Decomposing Evaluation Costs

649 Does plural ground truth impose prohibitive costs? The concern is legitimate, but the cost objection conflates two
 650 distinct issues – the practical question of resource allocation and the epistemic question of what counts as correct
 651 transcription.

652 Because our proposal concerns evaluation infrastructure rather than runtime transcription, costs are incurred once
 653 during benchmark construction rather than per-deployment. ASR evaluation incurs two cost categories that respond
 654 differently to plural ground truth. **Computational costs** (inference, WER computation, analysis) are *invariant to*
 655 *reference multiplicity*: whether we evaluate against one reference or three, we run inference once per audio segment.
 656 Given M systems, N segments, and $|P|$ policies, computational cost is $O(MN|P|)$, where $|P|$ is typically small. **Human**
 657 **annotation costs** (transcriber time, quality assurance) scale with audio duration times policies: $O(D \cdot |P|)$. This is
 658 where plural ground truth increases expenses.

663 6.1 Mitigating Annotation Costs

664 Three factors reduce the practical burden. First, **benchmark amortization**: plural references are evaluation infra-
 665 structure, produced once and reused across all subsequent system assessments. A benchmark with plural ground
 666 truth references enable unlimited evaluations at zero marginal annotation cost. Moreover, systematic yet simple post-
 667 processing rules can generate convention variants from a single high-fidelity verbatim transcript reducing annotation
 668 to one careful pass per utterance. Second, **labor market expansion**: multi-reference annotation sustains professional
 669 transcription expertise – clinical transcriptionists, legal transcribers, sociolinguistic annotators – rather than replacing
 670 it with under-specified “general purpose” annotation. Third, **selective deployment**: narrow WER-Range indicates
 671 convention choice matters little, justifying single-reference reporting; wide WER-Range signals plural evaluation is
 672 necessary. Initial multi-reference evaluation can diagnose when cheaper approaches suffice.

6.2 Who Should Bear These Costs?

677 Plural ground truth is an evaluation methodology concerning how we assess systems, not how end users interact
 678 with them. **Academic researchers** face genuine resource constraints, but research evaluation serves a gatekeeping
 679 function – misspecified benchmarks propagate errors downstream. **Commercial deployers** have direct financial
 680 interest in accurate evaluation; the cost of multi-reference evaluation is negligible compared to deploying an ill-suited
 681 system. **Technology companies** possess resources for comprehensive evaluation but often lack incentive. We make a
 682 normative claim: companies marketing speech technologies as universally accessible have an obligation to evaluate
 683 against interpretive frameworks used by the communities they claim to serve.

684 The cost objection obscures a deeper issue. There is a categorical difference between *epistemic humility* – “We
 685 recognize multiple legitimate interpretations exist, but resource constraints prevent evaluating all; we report WER
 686 under convention p^* while acknowledging this limitation” – and *epistemic monism* – “We evaluate against p^* because it
 687 represents the true transcription.” Current practice embodies the latter. Benchmarks report “WER,” not “WER under clean
 688 conventions.” The convention is naturalized, rendered invisible. Even when constraints permit only one convention,
 689 reporting “WER = 15% (non-verbatim)” rather than “WER = 15%” acknowledges that accuracy is relational. This costs
 690 nothing and changes everything.

691 For organizations committed to fair evaluation despite resource constraints, we provide a staged implementation
 692 roadmap in Appendix D.

7 Conclusion

693 This paper has argued that standard ASR evaluation commits epistemic injustice – not through technical failure
 694 but through interpretive poverty. By enforcing a single transcription convention as ground truth, reference monism
 695 systematically disadvantages speakers whose communicative practices diverge from that convention. Our empirical
 696 results show that WER for identical ASR output varies by up to 77% depending on which convention defines ground
 697 truth, and that this variation falls disproportionately on speakers with aphasia.

698 The practical upshot is WER-Range: report the range of accuracy values across legitimate transcription conventions
 699 rather than a single number. This shift does not resolve all fairness concerns, but it distinguishes two sources of disparity
 700 that reference monism conflates – those arising from system limitations and those arising from evaluative infrastructure.
 701 Only the former are technical problems; the latter are normative choices masquerading as measurement.

702 Our analysis has limitations. Empirically, we demonstrate plural ground truth using a single corpus (AphasiaBank),
 703 three transcription conventions, and one dimension of speaker variation (clinical status). While the theoretical framework
 704 applies wherever multiple legitimate conventions exist – including dialectal variation, non-native speech, child language,
 705 and accented speech – we have not validated EID and Δ EID for these populations, and our convention set could be
 706 expanded to include medical, linguistic, or accessibility-focused transcription standards. Future work should also assess
 707 statistical robustness through bootstrapping or mixed-effects modeling given the relatively small speaker counts per
 708 group.

709 Clinical speech communities and sociolinguists have developed transcription conventions adequate to marginalized
 710 speakers’ communicative practices. These interpretive resources exist. Continued reliance on reference monism despite
 711 their availability constitutes willful hermeneutical ignorance. The cost of producing multiple references is real; the cost
 712 of assuming only one correct reference – when that assumption predictably disadvantages marginalized communities –
 713 is epistemic injustice. We have tried to make both visible.

729 Generative AI Usage Statement

730 The team of authors responsibly used Generative AI for specific coding tasks such as LaTex table formatting and
 731 occasional word-smithing for enhanced readability.

733 734 References

735 [1] Aléna Aksénova, Daan van Esch, James Flynn, and Pavel Golik. 2021. How might we create better benchmarks for speech recognition?. In *Proceedings*
 736 *of the 1st workshop on benchmarking: Past, present and future*. 22–34.

737 [2] Elizabeth Anderson. 2012. Epistemic justice as a virtue of social institutions. *Social epistemology* 26, 2 (2012), 163–173.

738 [3] Rosana Ardila, Megan Branson, Kelly Davis, Michael Kohler, Josh Meyer, Michael Henretty, Reuben Morais, Lindsay Saunders, Francis Tyers,
 739 and Gregor Weber. 2020. Common voice: A massively-multilingual speech corpus. In *Proceedings of the twelfth language resources and evaluation*
 740 *conference*. 4218–4222.

741 [4] Lora Aroyo and Chris Welty. 2015. Truth is a lie: Crowd truth and the seven myths of human annotation. *AI Magazine* 36, 1 (2015), 15–24.

742 [5] Mary Bucholtz. 2000. The politics of transcription. *Journal of pragmatics* 32, 10 (2000), 1439–1465.

743 [6] Anna Seo Gyeong Choi and Hoon Choi. 2025. Fairness of Automatic Speech Recognition: Looking Through a Philosophical Lens. In *Proceedings of*
 744 *the AAAI/ACM Conference on AI, Ethics, and Society*, Vol. 8. 605–614.

745 [7] Emmalon Davis. 2016. Typecasts, tokens, and spokespersons: A case for credibility excess as testimonial injustice. *Hypatia* 31, 3 (2016), 485–501.

746 [8] Pranav Dheram, Murugesan Ramakrishnan, Anirudh Raju, I-Fan Chen, Brian King, Katherine Powell, Melissa Saboovala, Karan Shetty, and Andreas
 747 Stolcke. 2022. Toward fairness in speech recognition: Discovery and mitigation of performance disparities. *arXiv preprint arXiv:2207.11345* (2022).

748 [9] Xiangjue Dong, Yibo Wang, Philip S Yu, and James Caverlee. 2024. Disclosure and mitigation of gender bias in llms. *arXiv preprint arXiv:2402.11190*
 749 (2024).

750 [10] Kristie Dotson. 2011. Tracking epistemic violence, tracking practices of silencing. *Hypatia* 26, 2 (2011), 236–257.

751 [11] Hubert L Dreyfus. 1992. *What computers still can't do: A critique of artificial reason*. MIT press.

752 [12] Maria Eriksson, Erasmo Purificato, Arman Noroozian, Joao Vinagre, Guillaume Chaslot, Emilia Gomez, and David Fernandez-Llorca. 2025. Can We
 753 Trust AI Benchmarks? An Interdisciplinary Review of Current Issues in AI Evaluation. *arXiv:2502.06559* [cs.AI]. <https://arxiv.org/abs/2502.06559>

754 [13] Ragnar Fjelland. 2020. Why general artificial intelligence will not be realized. *Humanities and Social Sciences Communications* 7, 1 (2020), 1–9.

755 [14] Kathleen C Fraser, Frank Rudzicz, Naida Graham, and Elizabeth Rochon. 2013. Automatic speech recognition in the diagnosis of primary progressive
 756 aphasia. In *Proceedings of the fourth workshop on speech and language processing for assistive technologies*. 47–54.

757 [15] Miranda Fricker. 2007. *Epistemic injustice: Power and the ethics of knowing*. Oxford university press.

758 [16] Hans-Georg Gadamer. 2013. *Truth and method*. A&C Black.

759 [17] Chongming Gao, Ruijun Chen, Shuai Yuan, Kexin Huang, Yuanqing Yu, and Xiangnan He. 2025. Sprec: Self-play to debias llm-based recommendation.
 760 In *Proceedings of the ACM on Web Conference 2025*. 5075–5084.

761 [18] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wallach, Hal Daumé Iii, and Kate Crawford. 2021.
 762 Datasheets for datasets. *Commun. ACM* 64, 12 (2021), 86–92.

763 [19] Trystan S Goetze. 2018. Hermeneutical dissent and the species of hermeneutical injustice. *Hypatia* 33, 1 (2018), 73–90.

764 [20] Christina N Harrington, Radhika Garg, Amanda Woodward, and Dimitri Williams. 2022. “It’s kind of like code-switching”: Black older adults’
 765 experiences with a voice assistant for health information seeking. In *Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems*.
 766 1–15.

767 [21] Annika Heuser, Tyler Kendall, Miguel del Rio, Quinn McNamara, Nishchal Bhandari, Corey Miller, and Miguel Jetté. 2024. Quantification of stylistic
 768 differences in human-and ASR-produced transcripts of African American English. In *Proc. Interspeech 2024*. 4538–4542.

769 [22] Immanuel Kant. 1909. *Critique of practical reason*. Huge Print Press.

770 [23] Immanuel Kant. 1999. *Critique of pure reason*. Cambridge university press.

771 [24] Alison Koenecke, Andrew Nam, Emily Lake, Joe Nudell, Minnie Quartey, Zion Mengesha, Connor Toups, John R Rickford, Dan Jurafsky, and
 772 Sharad Goel. 2020. Racial disparities in automated speech recognition. *Proceedings of the national academy of sciences* 117, 14 (2020), 7684–7689.

773 [25] Colin Lea, Zifang Huang, Jaya Narain, Lauren Tooley, Dianna Yee, Dung Tien Tran, Panayiotis Georgiou, Jeffrey P Bigham, and Leah Findlater. 2023.
 774 From user perceptions to technical improvement: Enabling people who stutter to better use speech recognition. In *Proceedings of the 2023 CHI*
 775 *conference on human factors in computing systems*. 1–16.

776 [26] Jingling Li, Zeyu Tang, Xiaoyu Liu, Peter Spirtes, Kun Zhang, Liu Leqi, and Yang Liu. 2024. Steering llms towards unbiased responses: A
 777 causality-guided debiasing framework. In *ICLR 2024 Workshop on Reliable and Responsible Foundation Models*.

778 [27] Tatiana Likhomanenko, Qiantong Xu, Vineel Pratap, Paden Tomasello, Jacob Kahn, Gilad Avidov, Ronan Collobert, and Gabriel Synnaeve. 2021.
 779 Rethinking Evaluation in ASR: Are Our Models Robust Enough?. In *Proc. Interspeech 2021*. 311–315.

780 [28] Zichao Lin, Shuyan Guan, Wending Zhang, Huiyan Zhang, Yugang Li, and Huaping Zhang. 2024. Towards trustworthy LLMs: a review on debiasing
 781 and dehallucinating in large language models. *Artificial Intelligence Review* 57, 9 (2024), 243.

782 [29] Robbie Love and David Wright. 2021. Specifying challenges in transcribing covert recordings: Implications for forensic transcription. *Frontiers in*
 783 *Communication* 6 (2021), 797448.

[30] B. MacWhinney, D. Fromm, M. Forbes, and A. Holland. 2011. AphasiaBank: Methods for studying discourse. *Aphasiology* 25 (2011), 1286–1307.

[31] Quinten McNamara, Miguel Ángel del Río Fernández, Nishchal Bhandari, Martin Ratajczak, Danny Chen, Corey Miller, and Miguel Jetté. 2024. Style-agnostic evaluation of ASR using multiple reference transcripts. *arXiv preprint arXiv:2412.07937* (2024).

[32] Katelyn Xiaoying Mei, Anna Seo Gyeong Choi, Hilke Schellmann, Mona Sloane, and Allison Koenecke. 2025. Addressing Pitfalls in Auditing Practices of Automatic Speech Recognition Technologies: A Case Study of People with Aphasia. *arXiv preprint arXiv:2506.08846* (2025).

[33] Orestis Papakyriakopoulos, Anna Seo Gyeong Choi, William Thong, Dora Zhao, Jerome Andrews, Rebecca Bourke, Alice Xiang, and Allison Koenecke. 2023. Augmented datasheets for speech datasets and ethical decision-making. In *Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency*. 881–904.

[34] Dana Pessach and Erez Shmueli. 2022. A review on fairness in machine learning. *ACM Computing Surveys (CSUR)* 55, 3 (2022), 1–44.

[35] Barbara Plank. 2022. The “Problem” of Human Label Variation: On Ground Truth in Data, Modeling and Evaluation. In *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*. 10671–10682.

[36] Gaile Pohlhaus Jr. 2012. Relational knowing and epistemic injustice: Toward a theory of willful hermeneutical ignorance. *Hypatia* 27, 4 (2012), 715–735.

[37] Alisha Pradhan, Amanda Lazar, and Leah Findlater. 2020. Use of intelligent voice assistants by older adults with low technology use. *ACM Transactions on Computer-Human Interaction (TOCHI)* 27, 4 (2020), 1–27.

[38] Matteo Prandi, Vincenzo Suriani, Federico Pierucci, Marcello Galisai, Daniele Nardi, and Piercosma Bisconti. 2025. Bench-2-CoP: Can We Trust Benchmarking for EU AI Compliance? *arXiv:2508.05464 [cs.AI]* <https://arxiv.org/abs/2508.05464>

[39] Anka Reuel, Amelia Hardy, Chandler Smith, Max Lamparth, Malcolm Hardy, and Mykel J. Kochenderfer. 2024. BetterBench: Assessing AI Benchmarks, Uncovering Issues, and Establishing Best Practices. *arXiv:2411.12990 [cs.AI]* <https://arxiv.org/abs/2411.12990>

[40] Lucy A. Suchman. 2006. *Human-Machine Reconfigurations: Plans and Situated Actions* (2nd ed.). Cambridge University Press, Cambridge. doi:10.1017/CBO9780511808418 Online publication date: June 2012.

[41] Ravichander Vipperla, Steve Renals, and Joe Frankel. 2010. Ageing voices: The effect of changes in voice parameters on ASR performance. *EURASIP Journal on Audio, Speech, and Music Processing* 2010, 1 (2010), 525783.

[42] Angelina Wang, Aaron Hertzmann, and Olga Russakovsky. 2024. Benchmark suites instead of leaderboards for evaluating AI fairness. *Patterns* 5, 11 (2024).

[43] Yifan Wang, Weizhi Ma, Min Zhang, Yiqun Liu, and Shaoping Ma. 2023. A survey on the fairness of recommender systems. *ACM Transactions on Information Systems* 41, 3 (2023), 1–43.

[44] Alicia Beckford Wassink, Cady Gansen, and Isabel Bartholomew. 2022. Uneven success: automatic speech recognition and ethnicity-related dialects. *Speech Communication* 140 (2022), 50–70.

[45] Robin Zhao, Anna SG Choi, Allison Koenecke, and Anaïs Rameau. 2025. Quantification of automatic speech recognition system performance on d/deaf and hard of hearing speech. *The Laryngoscope* 135, 1 (2025), 191–197.

[46] Maryam Zolnoori, Sasha Vergez, Zidu Xu, Elyas Esmaeili, Ali Zolnour, Krystal Anne Briggs, Jihye Kim Scroggins, Seyed Farid Hosseini Ebrahimabad, James M Noble, Maxim Topaz, et al. 2024. Decoding disparities: evaluating automatic speech recognition system performance in transcribing Black and White patient verbal communication with nurses in home healthcare. *JAMIA open* 7, 4 (2024), ooae130.

A Extended Philosophical Background

This appendix elaborates the philosophical concepts introduced in §2.

A.1 Extensions of Testimonial Injustice

Davis [7] extends Fricker’s analysis to *credibility excess*: being judged *more* credible due to positive stereotypes also constitutes testimonial injustice, because the speaker is treated as a representative of their group rather than as an individual epistemic agent. This bidirectional analysis proves relevant for ASR: speakers of “standard” dialects receive credibility excess – their speech patterns assumed correct by default – while speakers of marginalized dialects receive credibility deficit.

A.2 Goetze’s Taxonomy of Hermeneutical Injustice

Goetze [19] provides a taxonomy of six species of hermeneutical injustice, distinguished by who possesses the relevant interpretive tools (Table 6).

Table 6. Species of hermeneutical injustice, adapted from Goetze [19]

Species	Subject	Subject's group	Other groups	Primary harm
Effacement	No	No	No	Cognitive
Isolation	Yes	No	No	Communicative
Separation	No	No	Yes	Cognitive
Ghettoization	Yes	Yes	No	Communicative
Exportation	Yes	No	Yes	Communicative
Obstruction	Yes	Yes	Yes (some)	Communicative

The taxonomy reveals that hermeneutical injustice manifests as either *cognitive* harm (the subject cannot understand her own experience) or *communicative* harm (the subject understands but cannot make others understand). Both are instances of the same fundamental wrong: at some crucial moment, the subject's experience lacks intelligibility due to gaps in available interpretive resources.

For ASR, *hermeneutical ghettoization* is most salient: clinical speech communities have developed verbatim transcription conventions preserving disfluencies as clinically meaningful; AAE-speaking communities have linguistic norms well-documented in sociolinguistics. These interpretive resources exist within these communities but have not been incorporated into mainstream ASR evaluation frameworks – leaving speakers unable to “communicate” their speech to systems that lack the interpretive tools to recognize it as legitimate.

A.3 Dreyfus's Critique: Three Dimensions

Three aspects of Dreyfus's [11] critique apply to ASR ground truth:

The frame problem. Determining what counts as “relevant” context requires appealing to larger contexts, leading to infinite regress. What counts as “correct” transcription depends on purpose – legal documentation, medical records, linguistic research – but specifying which purpose is relevant requires further contextual judgment. The assumption that transcription can be evaluated against purpose-independent ground truth ignores this fundamental dependence.

Tacit knowledge. Expert transcribers operate through intuitive expertise that cannot be articulated as explicit rules. When professionals disagree about rendering an utterance, they are exercising different tacit understandings of what matters in context. Aggregating judgments into “ground truth” yields consensus – a social construction reflecting the perspectives of those who predominate in transcription professions – not objectivity.

Embodied understanding. Dreyfus emphasized that human understanding is fundamentally embodied and situated. When humans comprehend speech, we interpret communicative acts embedded in social situations, speaker relationships, and shared backgrounds. A transcriber hearing a speaker pause, restart, and rephrase understands this as word-finding difficulty, nervousness, or emphasis depending on context. ASR systems process what Dreyfus called “isolated domains” of acoustic features, stripped of embodied context. They miss what Dreyfus termed “solicitations” – the ways environment calls forth appropriate responses without explicit reasoning.

Fjelland [13] recently revived Dreyfus's critique for deep learning, arguing that even modern neural systems cannot handle genuinely novel situations requiring contextual judgment. For ASR, no amount of training data substitutes for the interpretive flexibility human transcribers bring – flexibility excluded when judgments are flattened into fixed labels.

885 **A.4 Gadamer’s Hermeneutic Circle**

886 Gadamer’s [16] concept of the *hermeneutic circle* further challenges ASR’s approach. The circle describes a fundamental
 887 structure: we cannot understand parts of an utterance without grasping the whole, yet we grasp the whole only through
 888 understanding parts. This is productive, not vicious – interpretation proceeds by moving between part and whole,
 889 revising understanding of each.

890 Human transcribers embody this movement. Hearing an ambiguous word, they interpret it in light of the sentence;
 891 understanding the sentence, they revise their sense of the word. As conversation unfolds, they continuously adjust
 892 interpretation. A word that seemed erroneous may reveal itself as intentional repetition; a pause that seemed like
 893 disfluency may emerge as emphasis.

894 ASR systems typically process speech in segments, committing to local decisions without capacity to revise earlier
 895 interpretations as context emerges – lacking the circular, revisionary structure that makes human understanding
 896 possible.

901 **A.5 Synthesis: Seven Philosophical Resources**

902 The hermeneutical gap synthesizes seven philosophical contributions:

- 903 • From **Fricker**: the gap constitutes hermeneutical injustice when it results from the speaker’s marginalization
 904 from processes that shaped transcription conventions.
- 905 • From **Goetze**: when marginalized communities have developed their own conventions (hermeneutical dissent),
 906 the gap reflects ghettoization – dominant frameworks’ failure to incorporate available interpretive resources.
- 907 • From **Dotson**: the gap induces both testimonial quieting (speech is misrecognized) and testimonial smothering
 908 (speakers modify their voice to close the gap).
- 909 • From **Anderson**: the gap is structural, embedded in institutions of transcription and evaluation, not remediable
 910 through individual system improvements alone.
- 911 • From **Pohlhaus**: the persistence of the gap despite available resources constitutes willful hermeneutical
 912 ignorance.
- 913 • From **Dreyfus**: the assumption that the gap can be closed by identifying “true” ground truth misunderstands
 914 the contextual, tacit nature of transcription expertise.
- 915 • From **Gadamer**: the gap reflects unacknowledged prejudices in transcription conventions that, once recognized,
 916 become contestable normative choices.

923 **B Extended Experimental Results**

924 This appendix provides complete experimental data summarized in §4.

927 **B.1 Test Set Composition**

928 Our test set comprises 8 hours 58 minutes of speech from the AphasiaBank English Protocol dataset, stratified by
 929 clinical status, age group, and gender. Table 7 summarizes balance across primary grouping variables.

932 **B.2 Edit Operation Breakdown**

933 Table 8 presents the complete breakdown of WER into insertions (I), deletions (D), and substitutions (S) for all Rev AI
 934 systems across all reference conventions.

935
 936 Manuscript submitted to ACM

Table 7. Test set balance verification

Variable	Level	Files	Hours
Clinical Status	Control	29	3.13
	Fluent Aphasia	18	3.55
	Non-fluent Aphasia	12	2.30
Gender	Female	30	4.10
	Male	29	4.87
Age Group	60–79	33	5.34
	40–59	21	3.21
	<40	5	0.42

Table 8. Edit operation breakdown (%) by ASR system and reference convention

ASR System	Reference	WER	I	D	S
Rev AI v2 (verbatim)	Verbatim	9.81	2.18	2.81	4.82
	Non-verbatim	17.38	12.26	1.30	3.82
	Legal	10.46	4.84	2.33	3.30
Rev AI v2 (non-verbatim)	Verbatim	16.18	1.03	11.34	3.80
	Non-verbatim	9.04	3.17	2.43	3.44
	Legal	11.46	0.68	8.19	2.59
Rev AI v3 (verbatim)	Verbatim	10.60	2.27	3.35	4.98
	Non-verbatim	17.83	12.11	1.66	4.05
	Legal	11.94	4.97	2.93	4.04
Rev AI v3 (non-verbatim)	Verbatim	16.95	0.98	12.06	3.91
	Non-verbatim	9.60	2.65	3.41	3.53
	Legal	12.71	0.75	9.06	2.89
Rev AI v3 (legal)	Verbatim	16.00	2.45	6.21	7.34
	Non-verbatim	14.76	8.74	1.32	4.71
	Legal	10.96	1.68	2.43	6.85

Interpretation: The edit operation profile systematically shifts with convention mismatch:

- **Verbatim ASR × Non-verbatim reference:** Insertions dominate (12.26%, 12.11%). The system produces disfluencies that the reference excludes, so preserved fillers become “spurious insertions.”
- **Non-verbatim ASR × Verbatim reference:** Deletions dominate (11.34%, 12.06%). The system removes disfluencies that the reference preserves, so omitted fillers become “missing words.”
- **Matched systems:** Edit operations are balanced ($I \approx D \approx S$), reflecting genuine transcription errors rather than convention mismatch.

This pattern demonstrates that *what counts as an error* is convention-dependent. The same system behavior – preserving or removing disfluencies – registers as correct or erroneous depending solely on the reference convention.

B.3 Per-Group Results for All Systems

Table 9 presents WER disaggregated by clinical status for all ASR systems, under each reference convention.

Table 10 summarizes the fairness gap (non-fluent – control) across all system-reference combinations.

Table 9. WER (%) by speaker group, Reference: Verbatim

ASR System	Control	Aphasia (all)	Fluent	Non-fluent
Rev AI v2 (verbatim)	4.03	15.67	14.95	17.53
Rev AI v2 (non-verbatim)	8.26	24.22	22.74	28.10
Rev AI v3 (verbatim)	7.76	20.44	18.85	24.51
Rev AI v3 (non-verbatim)	11.75	28.82	26.26	35.35
Rev AI v3 (legal)	10.83	27.61	25.59	32.76

Table 10. Fairness gap ($WER_{non-fluent} - WER_{control}$) in percentage points

ASR System	Verbatim	Non-verbatim	Legal
Rev AI v2 (verbatim)	13.50	21.68	13.89
Rev AI v2 (non-verbatim)	19.84	10.72	11.27
Rev AI v3 (verbatim)	16.75	20.75	17.13
Rev AI v3 (non-verbatim)	23.60	13.84	16.74
Rev AI v3 (legal)	21.93	15.26	14.45

Key observation: The fairness gap varies by 50–100% depending on reference convention. For Rev AI v2 (verbatim), the gap ranges from 13.50 pp (verbatim reference) to 21.68 pp (non-verbatim reference) – a 60% increase. For Rev AI v2 (non-verbatim), the pattern reverses: the gap is largest under verbatim reference (19.84 pp) and smallest under non-verbatim reference (10.72 pp). *Which system appears “fairer” depends entirely on which convention defines ground truth.*

B.4 Inter-Reference Distance

To directly measure how much transcription conventions diverge, we compute the edit distance between reference pairs using each ASR hypothesis as an anchor. This operationalizes the hermeneutical gap: the distance a speaker’s contribution must “travel” when evaluated under a convention misaligned with their communicative norms.

For each ASR output $h(x)$, we identify which words match each reference, then compute WER between reference pairs based on alignment. Table 11 presents results.

Interpretation: The distance between verbatim and non-verbatim references ranges from 6.81% to 10.91% depending on the ASR anchor used for alignment. This represents the *irreducible divergence* between conventions – the portion of “error” attributable to interpretive framework choice rather than system performance.

Three patterns emerge:

- (1) **Verbatim–Non-verbatim distance is substantial:** Averaging across anchors, verbatim and non-verbatim references differ by approximately 8% WER. This is the hermeneutical gap in quantitative terms.
- (2) **Legal occupies middle ground:** Legal–Verbatim distance (5.71–10.52%) and Legal–Non-verbatim distance (5.72–10.10%) vary depending on the ASR anchor, suggesting legal transcription shares features with both extremes.
- (3) **Edit operations reveal convention semantics:** The Verbatim–Non-verbatim distance is dominated by insertions when the anchor is verbatim-oriented (non-verbatim reference lacks the disfluencies) and by deletions when the anchor is non-verbatim-oriented (verbatim reference has “extra” words). This confirms that the distance reflects systematic convention differences, not random variation.

Table 11. Inter-reference distance: WER (%) between reference pairs, by ASR anchor

ASR Anchor	Reference Pair	WER (std)	I	D	S
Rev AI v2 (verbatim)	Legal – Verbatim	5.71 (5.65)	1.81	1.58	2.32
	Legal – Non-verbatim	9.01 (7.81)	5.46	1.27	2.29
	Verbatim – Non-verbatim	7.43 (8.12)	3.06	1.36	3.01
Rev AI v2 (non-verbatim)	Legal – Verbatim	9.55 (6.61)	0.72	6.86	1.98
	Legal – Non-verbatim	5.72 (5.10)	1.15	2.63	1.95
	Verbatim – Non-verbatim	6.81 (6.65)	1.61	2.58	2.63
Rev AI v3 (verbatim)	Legal – Verbatim	6.79 (6.65)	2.09	2.03	2.67
	Legal – Non-verbatim	10.10 (8.00)	5.91	1.56	2.64
	Verbatim – Non-verbatim	7.92 (7.87)	3.29	1.53	3.09
Rev AI v3 (non-verbatim)	Legal – Verbatim	10.52 (10.09)	0.78	7.61	2.13
	Legal – Non-verbatim	6.57 (8.68)	1.19	3.20	2.18
	Verbatim – Non-verbatim	7.39 (9.21)	1.53	3.25	2.61
Rev AI v3 (legal)	Legal – Verbatim	9.39 (7.25)	1.96	1.79	5.63
	Legal – Non-verbatim	9.29 (7.12)	3.92	1.11	4.27
	Verbatim – Non-verbatim	10.91 (8.90)	5.25	1.30	4.36

This inter-reference distance bounds the possible improvement from system optimization alone: even a “perfect” system cannot score below the convention distance when evaluated against a misaligned reference. For speakers whose natural communicative patterns align with verbatim conventions but who are evaluated against non-verbatim references, this 7–11% distance represents an irreducible penalty – the quantified hermeneutical gap.

B.5 Extended EID Calculations

Table 12 presents EID calculations for all systems and speaker groups, under both non-verbatim and verbatim enforcement scenarios.

Key patterns:

- Systems achieve EID = 0 when the enforced policy matches their optimization target (e.g., non-verbatim systems under non-verbatim enforcement).
- For verbatim-optimized systems under non-verbatim enforcement, aphasic speakers bear 2–3× higher EID than control speakers.
- For non-verbatim-optimized systems under verbatim enforcement, the pattern reverses but remains: aphasic speakers bear higher EID.
- The “best policy” column reveals that fluent aphasic speakers sometimes benefit most from legal conventions (which preserve some but not all disfluencies), while non-fluent aphasic speakers consistently benefit from verbatim conventions.

Table 13 presents Δ EID across all systems.

Interpretation: Δ EID is positive (indicating structural burden on non-fluent speakers) whenever there is a mismatch between ASR optimization and enforced convention. The magnitude ranges from 4–10 pp. When ASR and enforcement align, Δ EID approaches zero – not because injustice disappears, but because all groups are equally well-served by the matching convention. The injustice lies in the *choice* of which convention to enforce, not in any particular system’s performance.

Table 12. EID by speaker group across all systems

ASR System	Group	Enforced: Non-verbatim		Enforced: Verbatim	
		EID	Best <i>p</i>	EID	Best <i>p</i>
Rev AI v2 (verbatim)	Control	4.73	V	0.00	V
	Fluent	12.14	L	1.03	L
	Non-fluent	12.91	V	0.00	V
Rev AI v2 (non-verb.)	Control	0.00	N	3.68	N
	Fluent	0.00	N	9.04	N
	Non-fluent	0.00	N	12.80	N
Rev AI v3 (verbatim)	Control	3.89	V	0.00	V
	Fluent	9.87	L	0.13	L
	Non-fluent	7.89	V	0.00	V
Rev AI v3 (non-verb.)	Control	0.00	N	3.98	N
	Fluent	0.00	N	9.21	N
	Non-fluent	0.00	N	13.74	N
Rev AI v3 (legal)	Control	4.89	L	2.48	L
	Fluent	6.69	L	6.32	L
	Non-fluent	3.52	L	9.96	L

Table 13. Δ EID (Non-fluent – Control) across systems and enforcement scenarios

ASR System	Enforced: Non-verbatim	Enforced: Verbatim
Rev AI v2 (verbatim)	+8.18 pp	0.00 pp
Rev AI v2 (non-verbatim)	0.00 pp	+9.12 pp
Rev AI v3 (verbatim)	+4.00 pp	0.00 pp
Rev AI v3 (non-verbatim)	0.00 pp	+9.76 pp
Rev AI v3 (legal)	-1.37 pp	+7.48 pp

C Extended Related Work

C.1 Fairness Metrics

Prior work on algorithmic fairness has largely focused on defining constraints over predictions relative to a fixed ground truth (Table 14). Metrics such as disparate impact, demographic parity, equalized odds, and equal opportunity formalize different normative commitments – equalizing acceptance rates, error rates, or true positive rates across protected groups – while taking the ground truth label Y as given.

This literature has produced valuable insights into trade-offs among fairness criteria and has shaped practice across domains including credit scoring, hiring, criminal justice, recommender systems, and language technologies across large language models, recommender systems, and automatic speech recognition models [8, 34, 43], and many debiasing methods have been developed to optimize for fairness performance [9, 17, 26, 28]. However, these metrics share a common structural assumption: reference monism. They presuppose that the labels against which systems are evaluated are objective, determinate, and independent of social context.

Our work departs from this paradigm at a prior level of abstraction. Rather than asking whether predictions are distributed fairly given a ground truth, we ask how the choice of ground truth itself structures downstream fairness

Metric	What it Enforces	Formal Definition
Disparate Impact	Similar <i>positive prediction rates</i> across groups	$\Pr(\hat{Y} = 1 \mid S \neq 1) / \Pr(\hat{Y} = 1 \mid S = 1) \geq 1 - \varepsilon$
Demographic Parity	Equality of <i>positive predictions</i> , regardless of <i>ground truth</i>	$ \Pr(\hat{Y} = 1 \mid S = 1) - \Pr(\hat{Y} = 1 \mid S \neq 1) \leq \varepsilon$
Equalized Odds	Equal <i>error rates</i> (FPR and TPR) across groups	$ \Pr(\hat{Y} = 1 \mid S = 1, Y = y) - \Pr(\hat{Y} = 1 \mid S \neq 1, Y = y) \leq \varepsilon, \forall y \in \{0, 1\}$
Equal Opportunity	Equal <i>true positive rates</i> across groups	$ \Pr(\hat{Y} = 1 \mid S = 1, Y = 1) - \Pr(\hat{Y} = 1 \mid S \neq 1, Y = 1) \leq \varepsilon$

Table 14. Overview of common group fairness metrics [34]. S denotes a protected attribute, \hat{Y} the predicted label, Y the true label, and ε an allowed tolerance.

assessments. In ASR evaluation, the “true label” is not a natural kind but the output of a transcription convention – one that encodes normative judgments about which features of speech matter and which may be discarded.

As a result, conventional group fairness metrics are ill-suited to detect a distinct form of injustice in speech technologies: systematic disparities induced by the enforcement of a single transcription convention when multiple legitimate conventions exist. Two systems may satisfy equalized odds relative to a clean reference while nonetheless imposing unequal interpretive burdens on speakers whose communicative practices diverge from that convention.

Our approach therefore complements, rather than replaces, existing fairness metrics. The quantities we introduce – EID and Δ EID – do not constrain prediction distributions. Instead, they measure the evaluation cost of reference monism: **the extent to which a group is penalized solely because evaluation restricts the space of legitimate interpretations**. This shifts the locus of fairness analysis from model behavior alone to the institutional practices that define correctness.

In this sense, EID operates upstream of standard fairness metrics. It diagnoses when disparities attributed to model bias are in fact artifacts of evaluative infrastructure. Once plural ground truths are acknowledged, conventional group fairness metrics can be meaningfully reapplied within each interpretive framework. Without this step, fairness assessments risk reintroducing the very interpretive exclusions they aim to measure.

C.2 Fairness Metrics and the Level of Analysis

Let $x \in \mathcal{X}$ denote a speech signal and $g \in \mathcal{G}$ a speaker group. Let $h : \mathcal{X} \rightarrow \mathcal{Y}$ be an ASR system producing a hypothesis $h(x)$. Let $p \in \mathcal{P}$ denote a transcription policy (or convention), and let $r^{(p)}(x)$ be the reference transcript induced by policy p . Finally, let $\ell(\cdot, \cdot)$ be an evaluation loss such as word error rate (WER).

Standard group fairness metrics – including demographic parity, equalized odds, and equal opportunity shown in Table 14 – analyze disparities in model predictions \hat{Y} across groups g , conditional on a fixed ground truth label Y . Formally, these metrics study quantities of the form

$$\Pr(\hat{Y} = 1 \mid g, Y = y), \quad (13)$$

and differ in which conditional independences they require to hold.

1197 Table 15. Evaluation practices differ in what is treated as variable versus fixed. Only plural ground truth varies the interpretive
 1198 framework itself.

1200 Practice	1201 What varies	1202 What is held fixed	1203 Formal object of analysis
1204 Multiple datasets	1205 Input distribution $x \sim \mathcal{D}_g$	1206 Ground truth Y , Policy p^*	1207 Generalization gaps: $\mathbb{E}_{x \sim \mathcal{D}_g} [\ell(h(x), r^{(p^*)}(x))]$
1208 Group fairness metrics	1209 Prediction distribution $\hat{Y} g$	1210 Ground truth Y , Policy p^*	1211 Group performance gaps: $\Pr(\hat{Y} = 1 g, Y = y)$
1212 Multiple annotators	1213 Annotator a	1214 Ground truth Y , Policy p^*	1215 Variance in $r_a^{(p^*)}(x)$
1216 Robustness testing	1217 $x \rightarrow x'$ or $Y \rightarrow Y'$	1218 Policy p^*	1219 Stability of $\ell(h(x), Y)$
1220 Plural ground truth	1221 Policy $p \in \mathcal{P}$	1222 Speech event $x \sim \mathcal{D}_g$	1223 $\{\ell(h(x), r^{(p)}(x)) : p \in \mathcal{P}\}$

1210 In ASR evaluation, however, the label Y is not primitive. Instead, it is induced by a transcription convention:

$$1211 \quad Y = r^{(p)}(x), \quad (14)$$

1212 where different choices of $p \in \mathcal{P}$ encode different, but equally legitimate, interpretations of the same speech event.
 1213 Conventional fairness metrics therefore presuppose reference monism: the enforcement of a single policy p^* as the
 1214 evaluation standard.

1215 Our approach departs from this assumption by allowing p to vary while holding x fixed. Rather than analyzing
 1216 disparities in \hat{Y} conditional on Y , we analyze how evaluation loss itself varies across legitimate interpretive frameworks:

$$1217 \quad \ell(h(x), r^{(p)}(x)) \quad \text{for } p \in \mathcal{P}. \quad (15)$$

1218 This shift exposes a form of structural disparity that fairness metrics defined over (\hat{Y}, Y) cannot detect: group-
 1219 dependent regret induced by the institutional choice to collapse interpretive plurality into a single enforced convention.
 1220 The quantities introduced in this paper (EID and Δ EID) formalize this regret, measuring the evaluation burden imposed
 1221 on a group solely by the choice of p^* .

1222 In short, group fairness metrics study disparities of the form

$$1223 \quad \text{Disparity}(\hat{Y} | Y), \quad (16)$$

1224 whereas plural ground truth studies disparities of the form

$$1225 \quad \text{Disparity}(\ell(h(x), r^{(p)}(x)) | p). \quad (17)$$

1226 These analyses operate at different levels and are therefore complementary rather than interchangeable.

1227 C.3 Distinguishing WER-Range from Adjacent Approaches

1228 One might propose averaging WER across conventions:

$$1229 \quad \text{WER-Avg}(h, D, P) := \frac{1}{|P|} \sum_{p \in P} \text{WER}_p(h, D) \quad (18)$$

1230 We resist this for several reasons. Averaging implicitly weights all conventions equally, which is itself a normative
 1231 choice – why should verbatim and non-verbatim count the same when clinical contexts privilege the former and
 1232 accessibility applications may prefer the latter? Averaging also obscures the range: two systems with identical WER-Avg
 1233 but different ranges (e.g., [10%, 14%] vs. [5%, 19%]) have meaningfully different characteristics. Most fundamentally,

1249 the problem is not *which* number we report but that we report *a* number as if it were objective. Averaging produces
1250 another single number, maintaining the illusion of determinate ground truth. WER-Range preserves the plurality that
1251 averaging collapses, shifting the question from “what is the true accuracy?” to “how does performance vary across
1252 legitimate interpretive frameworks?”

1253 A different objection asks whether WER-Range is simply cross-dataset evaluation by another name. It is not. Cross-
1254 dataset evaluation varies the *input distribution* – different speakers, recording conditions, demographics – while holding
1255 ground truth fixed. It asks: how well does this system generalize across speech populations? Plural ground truth varies
1256 the *interpretive framework* while holding input constant. The same audio, from the same speaker, is evaluated against
1257 different conventions. It asks: how much does apparent accuracy depend on which standard defines correctness? These
1258 analyses are orthogonal and locate performance variation differently. Cross-dataset variation is typically attributed to
1259 the system; convention variation cannot be, since a verbatim-optimized system scoring poorly against non-verbatim
1260 references is not malfunctioning but misaligned with the evaluative standard. Table 15 in § Appendix C formalizes this
1261 distinction across five evaluation practices.

1262 D Implementation Roadmap

1263 For organizations committed to fair evaluation despite resource constraints, we propose staged implementation:

1264 **Stage 1: Convention transparency** (minimal cost). Replace “WER” with “WER (under convention p)” in benchmark
1265 papers, system cards, and documentation [18, 33]. This requires no additional annotation but makes interpretive com-
1266 mitments visible. Concretely: the Open ASR Leaderboard should adopt convention-labeled WER reporting; Datasheets
1267 for Datasets [18] and speech dataset documentation [33] should include transcription convention as a required field;
1268 and ASR system cards should report performance under multiple conventions when targeting diverse user populations.

1269 **Stage 2: Diagnostic evaluation** (moderate cost). Produce multi-reference transcripts for a representative subsample
1270 (10–20% of data). If WER-Range is narrow, justify single-reference evaluation; if wide, proceed to Stage 3.

1271 **Stage 3: Strategic plural ground truth** (higher cost). Produce multiple references for populations where prior
1272 evidence suggests convention-dependence: clinical speech, non-standard dialects, child speech, second-language
1273 speakers.

1274 **Stage 4: Infrastructure investment** (long-term). Contribute multi-reference datasets to public repositories; advocate
1275 for funding agencies to support annotation infrastructure as essential research infrastructure.

1276 We do not dismiss cost concerns, but cost should be invoked to prioritize resources rather than justify epistemic
1277 monism. When evaluation practices systematically disadvantage marginalized speakers, the question is not “can we
1278 afford to fix this?” but “who bears the cost of not fixing this?” – the speakers whose contributions are rendered
1279 unintelligible by frameworks refusing to recognize their legitimacy.

1280 Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009