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SpeechSpectrum: A Linguistic Fidelity Spectrum for Accountable
Speech-to-Text
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Speech-to-text (STT) systems are increasingly embedded in everyday technologies, yet they largely continue to treat transcription as
a technical problem of accuracy, assuming a single “correct” representation of speech. This overlooks that speech can be transcribed
in multiple legitimate ways, and that different contexts demand different balances of fidelity, conciseness, and emphasis. We
contribute SpeechSpectrum, a framework reconceptualizing STT as cross-modal translation along a continuum of representational
fidelity that makes these representational decisions explicit and user-controllable. Through theoretical analysis and empirical
investigation, we show that existing STT systems already impose spectrum-based choices without user input, indicating the
normative significance of who controls transcription outcomes. Our user study (N=52) demonstrates that granting users explicit
control over transcript representation improves task support, while a comparative study shows that large language models fail to
capture the diversity and context-sensitivity of human preferences. We derive implications and recommendations for building STT
systems that prioritize user agency in representational decisions, and release open-source code - including the speechspectrum
Python package — and a prototype to support future research. Our work positions control over transcription fidelity as a core site

of user agency in speech technologies, and shows that system-imposed defaults constitute an accountability gap.

CCS Concepts: - Human-centered computing — Interaction paradigms; Accessibility; - Computing methodologies —

Speech recognition.
Additional Key Words and Phrases: speech-to-text, linguistic fidelity, automatic speech recognition, accessible technology

ACM Reference Format:

Anonymous Author(s). 2026. SpeechSpectrum: A Linguistic Fidelity Spectrum for Accountable Speech-to-Text. In Proceedings
of 2026 ACM Conference on Fairness, Accountability, and Transparency (FAccT °26). ACM, New York, NY, USA, 44 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 Introduction

When a user dictates a voice message, participates in a virtual meeting, or speaks to a voice assistant via a voice user
interface, they engage with Speech-to-Text (STT) systems.! These STT systems transform the user’s spoken words
into written text. Yet this modality of translation — from the rich, temporal, and contextually embedded nature of
speech to the standardized, persistent format of text — involves countless implicit decisions about what information
to preserve, modify, or discard entirely [31, 78]. For example, should disfluencies like “um” and “uh” be removed, or
kept because they can provide important information about a speaker’s confidence level? And, how should stylistic
differences be resolved? For example, “w- what he was sayin™ and “what, what he was saying” are both correct
transcriptions, varying only in style [129, 133].

These stylistic differences reflect deeper questions about user preferences and contextual needs. Consider the di-

verse scenarios in which people use speech-to-text technology and their various requirements: A court stenographer

ISpeech-to-Text (STT) refers both to the systems that perform speech-to-text translation, and the task of speech-to-text translation. STT encompasses
Automatic Speech Recognition (ASR) plus downstream processing; while ASR denotes the core acoustic-to-text conversion, STT captures the full
pipeline to user-facing output.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for
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to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
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2 Anon.

documenting legal proceedings requires verbatim preservation of every utterance, including hesitations and false

starts that may carry legal significance; A user dictating casual messages wants natural-sounding text that doesn’t

burden the recipient with the artifacts of spontaneous speech production; A d/Deaf person requires rich annotations
(e.g., in Netflix captions [4, 14]) to fully understand conversational nuances. Each of these use cases demands a
different balance between fidelity to the original speech signal and adaptation to the user’s informational needs —
yet current STT interfaces typically provide users with little control over this fundamental representational choice.
This disconnect is not merely a technical limitation but a civic one: when systems impose representational choices
without user input, they deny users the autonomy to access and comprehend spoken information in ways that meet
their needs - an issue of particular consequence for populations relying on STT for basic communication access.

This disconnect between diverse user needs and how STT systems operationalize available capabilities
results in a systematic denial of user agency, creating an accountability gap. This accountability gap is
not merely a usability issue but a matter of algorithmic fairness: when systems impose representational
choices without user input, they encode particular linguistic norms and communicative values while
denying users control over how speech is rendered. The question of who controls transcription outcomes
- system designers or users — has direct implications for whose speech patterns are accommodated and
whose are normalized away. While STT systems have improved in technical accuracy, they remain oblivious to
contextual factors determining whether transcripts serve user goals and individualized needs [167, 202]. The field
has focused on reducing transcription errors while neglecting the important question of transcription purpose. We
argue this misunderstands STT conversion as mechanical transcription task rather than cross-modal translation
involving choices about representation and information structure. Throughout this paper, we distinguish “STT
conversion” (technical signal transformation) from “STT translation” (the interpretive choices about fidelity and
style).

Drawing from theoretical frameworks in linguistics of modality differences, we propose reconceptualizing
STT output not as a single “correct” transcription, but as one point along a continuous spectrum of possible
representations. This linguistic fidelity spectrum — where fidelity, borrowed from translation studies’ distinction
between source-oriented versus target-oriented translation [47, 139], refers to the degree of faithfulness to source
material characteristics — ranges from highly compressed summaries that extract key semantic content to verbatim
transcriptions that preserve much acoustic detail, with numerous intermediate points representing different balances
between spoken language and written language conventions. Each point on this spectrum serves different user
needs and contexts, and the optimal choice depends not on context-independent STT accuracy metrics like Word
Error Rate (WER),? which assumes one correct transcription, but on the specific informational requirements of the
user’s task.

We introduce SpeechSpectrum, a framework that operationalizes this linguistic fidelity spectrum for STT system
design. Rather than pursuing a one-size-fits-all approach to transcription, SpeechSpectrum envisions interfaces
that give users explicit control over where their STT output shoul fall on this fidelity spectrum. Such systems treat
representation level as a designable parameter, allowing users to navigate between different information densities
and linguistic conventions as their needs require. This approach not only better serves individual users but also
addresses broader questions of algorithmic fairness by making visible the representational choices that are currently
hidden within system architectures.

We contribute: SpeechSpectrum (§3), a continuum-based framework for understanding STT conversion, vali-
dated through theoretical analysis and empirical investigation; case studies (Appendix B) demonstrating how

2WER measures edit distance between predicted and reference transcripts: WER = % (substitutions, deletions, insertions over total reference
words).
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Legal/Medical Business/Meeting Task Oriented
Paralinguisti " Selective N " . Keyword
aralinguistic Verbatim Disfluency Non-verbatim Standardized Enhanced Bullet Points. Extraction
®T ) =
0 @ i=
User increases fidelity User decreases fidelity
Principles
i User-Controlled Fidelity Context-Dependent Optimization Cross-Modal Translation !
i Users control representation level Legal # Business # Personal Choice, not error correction :
No system-imposed defaults Task-dependent Fidelity as design parameter |

Fig. 1. The SpeechSpectrum framework conceptualizes STT conversion as a continuous spectrum of verbatimicity
levels rather than a single transcription target. The gradient bar represents the continuum from high-fidelity paralinguistic
preservation (left) to low-fidelity keyword extraction (right), with eight reference points showing commonly used representations.
Domain indicators above show typical usage: Legal/Medical contexts require high fidelity, Business/Meeting contexts use moderate
fidelity, and Task-Oriented applications prefer low fidelity. Bidirectional arrows emphasize user control over fidelity based on
context and needs. Three core principles form SpeechSpectrum: (1) User-Controlled Fidelity — users specify their preferred
representation level rather than accepting system defaults; (2) Context-Dependent Optimization — optimal fidelity varies by
domain, task, and user goals; and (3) Cross-Modal Translation — STT is deliberate representational choice rather than minimizing
transcription errors against a single correct target, treating fidelity as a designable parameter.

real-world STT systems implicitly implement spectrum-based choices through their design decisions; user study
evidence (§4) that explicit control over transcript representation improves user experience; LLM study findings
(§4.2) revealing that LLMs - increasingly proposed as proxies for human judgment in evaluation tasks - fail to accu-
rately model diverse user preferences across fidelity levels; design recommendations, R1-R9 (§4.3, Appendix
G) addressing conceptual challenges and providing concrete guidance on hybrid architectures, alignment-based
metrics, data collection, and multimodal extensions; and open-source resources (Appendix H) including the
experimental code (https://anonymous.4open.science/r/SpeechSpectrum-A3D4), the demo website for the user
studies (https://speechspectrum.org/), and the speechspectrum Python package to translate transcripts along the
fidelity spectrum.

In §2, we describe background on speech fidelity across diverse communicative contexts and user populations,
examining how technical systems encode particular values about whose speech patterns are accommodated, high-
lighting gaps that SpeechSpectrum addresses. In §3, we introduce the SpeechSpectrum framework, and provide
an overview of key components, from paralingustic transcription to bullet point translation. In §4, we present user
studies demonstrating context-dependent fidelity preferences and LLM limitations in modeling human preferences.
In §5, we conclude with implications for future speech technology research and design. We provide case studies of

existing STT applications and technical implementation guidance in the appendix.

2 Background

A fundamental disconnect persists in how STT systems are studied, evaluated, and governed. Speech technology
research has largely framed transcription as a technical problem of accuracy, optimizing for quantitative metrics
while treating representational choices as neutral or incidental. In parallel, human-centered computing research has
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4 Anon.

often examined STT impacts without interrogating the technical assumptions and institutional defaults embedded
in these systems, leaving affected users without visibility or the ability to contest representational decisions. This
divide obscures the normative significance of transcription decisions: choices about what counts as a
‘correct’ transcript encodes values, redistributes epistemic authority, and shapes downstream judgments
in domains such as law, medicine, and accessibility. We draw on Al ethics, HCI, speech technology, and NLP
literatures to surface these hidden value judgments and to reframe STT not as a purely technical pipeline, but as a
site of accountability where representational power is exercised.

Communication as a Spectrum. Linguistics recognizes that human communication exists along a spectrum rather

than discrete spoken versus written categories, with numerous hybrid forms occupying intermediate positions [142].
This continuum justifies treating STT output as existing at different points of oral-literate mediation rather than
pursuing a single ‘optimal’ representation. Translation studies [5] conceptualize STT conversion as cross-modal
translation involving choices about fidelity and adaptation. Nida’s [139] distinction between formal equivalence
(preserving source language structures) and dynamic equivalence (preserving communicative effect) maps onto STT
design: verbatim transcription prioritizes formal equivalence to speech, while cleaned output prioritizes dynamic
equivalence for written consumption. This reveals that quality in STT cannot be defined without reference to
intended function. Treating fidelity as a designable parameter highlights that these decisions are normative: selecting
one representation over another determines which aspects of speech are preserved, erased, or institutionalized.
Among many fields, computational linguistics demonstrates that disfluencies (speech production features like ‘um,
‘uh, false starts, and repetitions, which we detail in §Appendix A) are not errors to be corrected but meaningful
features serving communicative functions [17, 44, 54, 182, 183]. Hesitations signal processing difficulty; false starts
and repairs reveal real-time negotiation; filled pauses serve discourse management. As a result, disfluency removal
systematically suppresses cues related to uncertainty, confidence, and agency - features that can be consequential
in evaluative and institutional settings. Our contribution in this domain is to propose SpeechSpectrum, a
framework reconceptualizing STT as cross-modal translation along a continuum of representational
fidelity.

Speech Interface Design. Voice interface research [96, 135] has focused on naturalness and intent recognition,

implicitly treating STT conversion as black box pre-processing. This works for command-based interactions, but
breaks down when users need to review, edit, or reference the textual output of their spoken interactions. Current
interfaces provide users with minimal visibility into speech interpretation and no control over representational
choices. Despite recognition of user diversity, systems provide users with minimal control over the linguistic
representation of their speech. Most commercial services include profanity filtering [68] and punctuation insertion
[69] with limited disfluency removal [156]. RevAl offers verbatim and non-verbatim transcription [24], but few
services provide finer-grained fidelity control, representing a significant gap in user agency.

Research on personalization in speech interfaces remain limited [157, 171], despite evidence that speech recognition
systems perform worse for speakers from marginalized communities [99, 130, 213]. Work on user-specific STT
models [26, 206] typically focuses on improving contextual accuracy [53] rather than allowing users to specify
representational preferences. Post-processing work on enhancing STT output readability [115] similarly doesn’t
address stylistic transcription. The accessibility community has made the most progress recognizing diversity in
transcript preferences. Live captioning research [18, 41, 103] typically examines surface-level preferences (font size,
timing) rather than fundamental representational questions. Meeting transcription tools have revealed preferences
for different detail depending on context. Users require varying summary lengths [59], indicating no single approach
serves all use cases even within domain. Our contribution is a set of agency-forward design recommendations

(R1-RY9) for STT systems.
Manuscript submitted to ACM
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Speech Transcription Choices. WER’s dominance in STT evaluation reflects a conception of transcription as me-

chanical reproduction rather than representational choice [3, 25, 58, 74, 130, 134, 169, 184]. This metric family
(detailed in §subsection G.2) traditionally assumes a single “correct” transcription without justifying why one choice
should be privileged or how such privileging can be considered legitimate across contexts — a result of engineering
limitations rather than principle. This assumption becomes problematic when evaluating contextually appropriate
representations. Consider “I, I think we should go” versus “I think we should go” Against a reference of “I think we
should go,” the first yields a higher WER due to repetition, yet for a legal professional assessing speaker confidence,
the disfluent version may be more valuable. Conversely, for a business meeting summary, the cleaned version
better serves user needs. WER’s singular ground truth cannot accommodate this contextual variation. Recent work
acknowledges that multiple valid transcriptions exist for the same speech [57, 95, 98, 129, 151, 161, 177], but offers
limited systematic alternatives accounting for user context.

The STT community has implicitly recognized our argument through domain-specific systems. Medical STT
[39, 40, 181] optimizes for different features — e.g., verbatim features are needed to diagnose a fluency disorder —
than conversational STT systems [52, 123, 150]. Legal STT [102, 117, 158] preserves disfluencies general-purpose
systems remove, while meeting tools [36, 165, 174] incorporate summarization inappropriate for forensic applications
[121]. However, these approaches are framed as separate technical problems rather than instances of a broader
fidelity design space. The ubiquity of post-processing also provides strong evidence. Text normalization, punctuation
restoration, and disfluency removal - standard but inconsistently implemented across services without norms [130]
— all represent spectrum movements, yet are treated as separate technical problems, obscuring the insight that they
are collectively implementing a continuum of representations.

Recent work by Teleki et al. [186] and Mei et al. [130] provides compelling evidence. Their STT comparisons
reveal that platforms by design preserve or remove different disfluencies, placing outputs at different spoken-written
continuum points. Our contribution is to conduct a user study to assess the usefulness of our proposed
SpeechSpectrum framework. We demonstrate that optimal fidelity choices vary by user expertise, content
type, and downstream task, directly challenging the assumption that a single representation can be

justified as universally correct.

3 The SpeechSpectrum Framework

Current STT paradigms suffer from three fundamental flaws that limit their ability to serve diverse user needs.
First, the notion of “accuracy” remains acontextual, assuming that technical fidelity to some a single predetermined
ground truth constitutes meaningful performance regardless of user goals or application context. Second, STT
research exhibits pervasive linguistic naivety, treating STT conversion as mechanical reproduction rather than the
complex process of cross-modal translation that it actually represents. Third, there exists a profound evaluation
disconnect between the technical metrics that dominate STT research and the actual value that users derive from
these systems in practice.

These limitations stem from a particular conceptual orientation: treating STT as transcription rather than
translation. We propose instead understanding STT conversion as modality translation along a continuous spectrum
of representational fidelity that compress, transform, and restructure information from the original speech signal
according to different communicative purposes and user needs. SpeechSpectrum is a framework that prioritizes user
agency in order to effectively meet widely varied user information needs with respect to spoken content. Critically,
all representations along SpeechSpectrum are derived from the original speech signal: all representations must
be derivable from what was actually said, without adding extraneous information, inferring unstated meanings,

or incorporating external context. The framework navigates how to represent spoken content, not whether to
Manuscript submitted to ACM
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6 Anon.

augment it. Rather than requiring users to choose between separate specialized tools (e.g., transcription services for
verbatim output, summarization tools for condensed content), SpeechSpectrum enables users to navigate fidelity
levels within a unified interface, making representational trade-offs explicit and controllable. A visual representation
of SpeechSpectrum is shown in Figure 1, and an example transcript and its representations along SpeechSpectrum

are shown in Figure 5.

3.1 A Continuum for Representing Speech-to-Text

We introduce the concept of verbatimicity (our operationalization of fidelity for STT conversion) — the degree
to which textual output preserves the structural, lexical, and paralinguistic characteristics of the original speech
signal. Unlike binary notions of accuracy (detailed more in §Appendix G), verbatimicity operates along a continuous
spectrum that encompasses multiple dimensions of fidelity simultaneously, from prosodic preservation to information
compression. Below we introduce the three foundational principles that guide how users navigate the verbatimicity
spectrum as indicated in Figure 1.

User-Controlled Fidelity. Central to SpeechSpectrum is the principle that users should control where their STT

output falls along the verbatimicity spectrum. This user agency recognizes that optimal representation depends on
context, purpose, and individual communicative needs that cannot be predetermined by system designers. A legal
professional documenting testimony requires different verbatimicity than a business executive reviewing meeting
highlights, yet current STT systems provide no mechanism for users to specify their representational preferences.

Context-Dependent Optimization. Different domains, tasks, and user goals demand fundamentally different ap-

proaches to transcript representation. Legal contexts may require high fidelity to preserve hesitations that may
indicate witness uncertainty [22], while medical triage documentation may benefit from concise bullet points that
highlight critical symptoms [175]. Meeting transcription serves different purposes for real-time note-taking versus
post-hoc review, and accessibility applications must balance speed with information richness. Rather than optimizing
for universal accuracy metrics, SpeechSpectrum systems should adapt their representational choices to the specific
communicative context and user objectives.

Cross-Modal Translation. Movement along the verbatimicity spectrum involves systematic decisions about infor-

mation preservation and transformation during cross-modal conversion from speech to text. At high verbatimicity
levels, systems preserve paralinguistic information such as hesitations and prosodic markers that may indicate
speaker certainty, emotional state indicating emphasis (e.g., numerical annotations for pitch contours) and emotional
affect (e.g., [laughs], [sighs]) or processing difficulty. At lower verbatimicity levels, summarization prioritizes factual
information extraction over subtle emotional indicators communicated by disfluencies (i.e. um, uh), such as a
perceived lack of confidence. Each compression step involves implicit judgments about what constitutes “relevant”

information, making these choices inherently political and contextually dependent [33].

3.2 Components

Along the SpeechSpectrum, lexical and nonlexical (e.g., um/uh) tokens can be used to produce different representations.
Each level serves particular communicative functions and user needs that cannot be fully replaced by other positions
on the spectrum. SpeechSpectrum conceptualizes representation as a continuous spectrum with multiple possible
pathways rather than strictly linear sequence. While we present common fidelity levels in approximate order, the
spectrum accommodates branching paths (e.g., selective disfluency preservation) and context-dependent navigation
rather than requiring stepwise progression through all intermediate forms. The levels we describe here represent
commonly used reference points rather than discrete categories; our prototype implements only a subset of widely

recognized representations for practical user study purposes.
Manuscript submitted to ACM
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Paralinguistic. The highest verbatimicity level extends beyond textual transcription to include paralinguistic
signals: emotional expressions (laughter, crying), physiological sounds (yawns, coughs), and prosodic patterns
(pitch variation, tone, pacing, volume changes) [20]. Effortful speech indicates communication difficulty [83];
even emojilization incorporates paralinguistic information [81]. This level serves specialized contexts requiring
maximal communicative context: discourse analysis, therapeutic interaction documentation, forensic applications.
Research on accessible speech interfaces for d/Deaf and hard-of-hearing (d/DHH) populations [93] offers fine-grained
environmental, emotional, and spatio-temporal information via paralinguistic signal [41, 94, 128]. LLMs can process
these paralinguistic aspects [88, 114], with recent research integrating them into speech language model architectures
[92, 110, 198].

Verbatim. The verbatim transcript is the most faithful textual version, comprehensively including disfluencies:
fillers or filled pauses (“um”, “uh”), repetitions (‘I I think”), false starts (“We should go- let’s leave”), and repairs
(“turn left,  mean right”). These differ from informal contractions (“gonna”, “wanna”) or dialect variations (“y’all”),
as disfluencies represent real-time speech production processes rather than stable linguistic choices. Technically,
STT models under-transcribe disfluencies by design or due to limited training data [186]. A user-centric challenge
with obtaining verbatim transcripts is that STT models must handle the phenomenon of good-enough word selection
[100], wherein speakers choose words based on cognitive accessibility rather than semantic precision, potentially
leading to transcripts that accurately capture imprecise speech rather than intended meaning. These transcripts
offer valuable contextual information for DHH individuals, with fine-grained emotion conveyed via the provided
disfluency signal [94, 128].

Selective Disfluency Preservation. Between verbatim and enhanced transcription lies a customizable middle ground

where users can toggle preservation of specific disfluency types. Users might choose to preserve meaningful
hesitations while removing filled pauses, or maintain false starts while eliminating repetitions. This granular control
acknowledges that different paralinguistic features serve different communicative functions and may be relevant for
different user purposes. These may represent branching paths from the main verbatimicity spectrum rather than
simple linear progression.

Non-Verbatim. Disfluency removal creates more readable text while preserving lexical content and basic syntactic
structure. This level serves users who need access to semantic content without the cognitive overhead of processing
production artifacts. However, the cleaning process necessarily involves interpretation decisions about which
features constitute “errors” versus meaningful linguistic choices, potentially reflecting bias against non-standard
linguistic practices. For instance, the removal of double negatives may seem like grammatical correction, but in legal
contexts, whether one “not” is preserved or dropped can fundamentally alter sentence meaning and ensuing legal
interpretations.

Standardized. Moving further along the spectrum, standardized transcription converts informal speech patterns to
conventional written forms, transforming reductions (e.g. gonna to going to), informal expressions, and colloquialisms
into their standard equivalents. This level bridges the gap between conversational and formal registers while
attempting to maintain the speaker’s essential content and structure.

Enhanced. Enhanced transcripts involve deliberate post-processing that improves word choice, sentence structure,
and coherence while preserving intended meaning. Parliamentary proceedings exemplify this, where transcribers
add omitted protocol elements like ‘Madame Speaker’ [196]. This addresses use cases where speakers want polished
versions of their spontaneous speech — such as lawyers preparing statements or professionals creating documentation

from informal discussion.
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8 Anon.

Legal Domain Imagine you are a case judge reading through a deposition transcript
Q1: Did the defendant seem confident about the details of the crash?
Q2: What were the events leading up to the crash?
Medical Domain Imagine you are a doctor looking over a triage dictation provided by a nurse
Q3: What are the main symptoms the patient is exhibiting?
Q4: Has the chest pain been going on for exactly three days, or could it have been longer/shorter?
Business Domain Imagine you are a team leader reading a meeting transcript
Q5: Does the team seem like they will meet the December deadline?
Q6: What are the action items from the meeting?

Fig. 2. User study questions across three domains (legal, medical, business); full text in §Appendix C.

Bullet Points. Bullet points are ultra-condensed summaries. High-compression approaches prioritize functional
over formal equivalence, extracting key information while abandoning surface linguistic features. These repre-
sentations serve task-oriented contexts where users need actionable information rather than detailed linguistic
content. However, the summarization process inevitably reflects assumptions about what information is “important,”
potentially marginalizing perspectives or concerns that don’t fit dominant organizational narratives.

Keyword Extraction. At the extreme low-verbatimicity end, keyword extraction reduces speech to essential terms
and concepts, serving contexts where users need rapid content identification or indexing capabilities rather than
readable text.

Each level thus involves trade-offs between information preservation and usability, fidelity and accessibility,
linguistic expression and standardized norms. The optimal choice depends entirely on user context, purpose, and
values — decisions that only users themselves can make appropriately.

Having established the theoretical foundation of SpeechSpectrum and its components, we now turn to empirical
validation. While existing STT applications implicitly operate at different points along this spectrum (detailed in
§Appendix B), the question remains whether users would benefit from explicit control over these fidelity choices.

The following section presents two complementary studies examining this question.

4 Empirical Studies
4.1 Study 1: User Study of Contextual Fidelity Preferences

4.1.1 Designing the SpeechSpectrum Prototype. To make the SpeechSpectrum framework concrete for empirical
evaluation, we designed a simplified prototype that served as a research probe rather than a full end-user system.
The prototype instantiated four representative transcript fidelities - Verbatim , Non-Verbatim , Enhanced , and
Bullet Points - chosen to balance manageability for participants with coverage of the framework’s conceptual
space, allowing us to preserve the core principles of SpeechSpectrum while keeping the study tasks tractable.

We implemented the prototype as a lightweight web application to ensure accessibility and consistency across
participants, shown in Figure 5. A web-based delivery lowered barriers to participation and guaranteed platform-
independence: users could access the system through a standard browser without installing software. This decision
was especially important for engaging less computationally-engaged professionals such as medical or legal experts,
whose perspectives were central to evaluating domain-specific transcription needs.

The interface was organized around domain-specific scenarios — Legal , Medical , and Business - reflecting
professional contexts where speech-to-text technologies are commonly applied. Participants could navigate across
fidelity levels using a clickable “spectrum” interface and switch domains through a menu bar. Standard web libraries
(CSS, Bootstrap, jQuery) were used to maintain visual consistency and responsiveness, but our primary design
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goal was to surface representational trade-offs, not to demonstrate technical novelty. In this way, the prototype
operationalized SpeechSpectrum as an interactive artifact, enabling us to empirically investigate whether different

tasks and domains demand different points along the verbatimicity spectrum.

4.1.2  Study Design. We conduct a user study with N=52 participants through convenience sampling from academic
and professional networks. We collect demographic data on participants’ professional backgrounds (see Table 4)—
beyond domain expertise, we collected information on participants’ STEM and STT backgrounds to understand
how technical familiarity with speech technologies might influence fidelity preferences. This allows us to examine
whether domain experts, technical experts, and general users exhibit different navigation patterns across the spectrum.
Participants engaged with the interactive SpeechSpectrum interface and completed scenario-based tasks. For each
domain, we presented two distinct task scenarios requiring different information extraction approaches. Participants
were asked to select which transcript version ( Verbatim , Non-Verbatim , Enhanced , or Bullet Points ) best
supported answering each of the six independent questions shown in Figure 2; participants selected which transcript

version best supported each task.

4.1.3  Are user preferences context-dependent? Our results, shown in Figure 3a, demonstrate clear evidence for context-
dependent fidelity preferences, supporting the core argument for user-controllable representation. Participants
revealed distinct preference patterns based on task requirements rather than universal preferences for higher or
lower fidelity levels. Legal confidence assessment (Q1) favored Verbatim transcripts, while legal event details
(Q2) preferred Bullet Points versions. Medical symptom identification (Q3) overwhelmingly chose Bullet Points ,
contrasting with medical duration precision (Q4) which showed more evenly-distributed preferences. Business
deadline assessment (Q5) favored Enhanced transcripts, while action items (Q6) strongly preferred Bullet Points .

To evaluate whether human preferences differ from a uniform distribution across transcript representations,
we applied a y? goodness-of-fit test for each question Q;, shown in Table 1. The y? goodness-of-fit test evaluates
departures from uniform preference distributions, while Cramér’s V, derived from y?, provides a normalized measure
of overall preference concentration. The dominance gap A(Q;) = p1 — p2 complements V by capturing the margin
between the most- and second-most (p1, p2) selected representations. Together, these metrics differentiate broadly
distributed preferences from cases with stronger local concentration.

Human preference distributions are generally weakly concentrated, with small to moderate effect sizes (V < 0.46
in 5/6 questions) and modest dominance gaps (A(Q;) < 0.40 in 4.6 questions), indicating near-ties among competing
representations rather than decisive single-choice dominance. However, in the Business domain, Q6 (Action
Items) exhibits a strong concentration (V = 0.70, A = 0.65), reflecting clear convergence on Bullet Points . Impor-
tantly, this contrast demonstrates that while human preferences are generally distributed across multiple
representations, sharper concentration can emerge for tasks with highly specific structural demands.

The study results support our three framework principles. Participants demonstrated sophisticated reasoning
about appropriate fidelity levels for different tasks, contradicting assumptions that users cannot make meaningful
representational choices [23, 125]. Clear preference patterns emerged based on task requirements rather than
participant demographics, demonstrating that optimal representation depends on use context rather than abstract

accuracy metrics.

4.14  Are user preferences expertise-dependent? We examined whether domain expertise shapes fidelity preferences
(detailed breakdown in Appendix Table 5). While sample sizes for specific expertise combinations are too small
for robust statistical inference, we observed no strong systematic patterns, with substantial variation within each
expertise group. Participant’s open-ended responses illustrate this diversity; a medical expert noted:
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(a) Across six task scenarios, human participants selected different transcript versions depending on task needs,
demonstrating that no single fidelity level universally serves all contexts. For example, verbatim transcripts were preferred
for confidence assessment in legal tasks (Q1), while bullet points dominated for identifying action items in business meetings
(Q6). These results provide empirical support for SpeechSpectrum’s core claim: transcript design should be treated as a context-
as an optimization for a single accuracy metric.

dependent and user-controllable choice rather than
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(b) When asked to complete the same six scenarios as human participants (Figure 3a), LLMs exhibited more extreme
preference patterns, often converging on a single transcript type (e.g., consistently selecting bullet points for business
tasks). R1, R2, R3 indicate three experimental rounds with different random seeds to account for variability. This contrast
highlights both the potential and the limitations of using LLMs as proxies for user evaluation in STT research. (See §4.2.1 - 4.2.2
for full statistical analysis details, and Appendix F.2 for an ablation study of the LLM temperature, 7.)

Fig. 3. Comparison of human and LLM preference distributions across six task scenarios (Q1-Q6).
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Human vs. Uniform Preference Distributions

Q; [Domain] x* df P \%4 Most Freq. Representation (p1)  A(Q;) [A(Q;i)Closy ]
Q1 [Legal] 1677 3 0.0008* 033 Verbatim 0.23 [0.02, 0.44]
Q; [Legal] 3354 3 0.0000°*  0.46 Bullet Points 0.35 [0.12, 0.56]

Qs [Medical] 3031 3 0.0000*  0.44 Bullet Points 0.40 [0.17, 0.58]

Q4 [Medical] 1.23 3 0.7456 0.09 Non-Verbatim / Enhanced -

Qs [Business] 13.08 3 0.0045**  0.29 Enhanced 0.25 [0.04, 0.42]

Q¢ [Business] 7662 3 0.0000°*  0.70 Bullet Points 0.65 [0.44, 0.81]

LLMg; vs. Uniform Preference Distributions

Q; [Domain] x* df P \% Most Freq. Representation (p1)  A(Q;) [A(Q;i)Closy ]
Q1 [Legal] 460.05 3 0.0000"**  0.99 Verbatim 1.00 [1.00, 1.00]
Q, [Legal] 12723 3 0.0000"*  0.52 Enhanced 0.21 [0.02, 0.48]

Qs [Medical] ~ 468.00 3 0.0000"*  1.00 Bullet Points 1.00 [1.00, 1.00]

Q4 [Medical] 47.64 3 0.0000**  0.32 Verbatim / Enhanced 0.06 [0.00, 0.29]

Qs [Business] 386.21 3 0.0000°**  0.91 Bullet Points 0.85 [0.69, 0.96]

Qg [Business] 468.00 3 0.0000**  1.00 Bullet Points 1.00 [1.00, 1.00]

Table 1. Human preferences are generally diffuse, often exhibiting near-ties among representations (mostly low-to-
moderate Cramér’s V, small A(Q;)), whereas LLM preferences are strongly concentrated with single-choice dominance.
)(2 goodness-of-fit tests assess whether preference distributions differ from uniform (across verbatim, non-verbatim, enhanced,
and bullet points), while Cramér’s V — computed from y? - provides a normalized, sample-size-robust effect size capturing the
degree of overall preference concentration. The dominance gap A(Q;) = p1 — p2 complements V by quantifying the local margin
between the most-preferred and runner-up representations. Together, V and A(Q;) distinguish globally concentrated distributions
from cases of decisive single-choice dominance.

It is nice to have the different output options. There are some situations [where] I would not want to dig

through a verbatim dialogue in order to get some quick information. [P20]

This highlights the value of concise representations for time-sensitive medical work.

A STT expert emphasized the practical benefits of mid-level fidelity:

Generally when reading a transcript, there a[re] rare cases in which the information I need is to see exact
wording and thoughts, more often than not I need to know the general information, and the enhanced

version fits well for that understanding in most cases. [P11]

STEM professionals’ responses also pointed to important trade-offs between detailed and summarized outputs.

One participant explained:

...for some questions you need some of the more "soft" language aspects to help ascertain someones
certainty, intent, etc. Like if someone is repeating themselves, stuttering, saying "I think", etc. Those are
present in Verbatim (and somewhat Non-verbatim), but are largely missing in Enhanced/Bullet Points.
[P12]

A participant who did not prefer SpeechSpectrum outputs noted:
I prefer a full explanation in a person’s own words in response to questions [P13]

This shows how different fidelity levels highlight or suppress cues that matter for particular reasoning tasks.
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Human vs. LLMpg; Preference Distributions

Q; [Domain] x? df P \4 Top Choice Alignment
Q1 [Legal] 3647 3 0.0000°*  0.59 v
Q; [Legal] 1446 3 00023 037 X

Qs [Medical] 2790 3 0.0000***  0.52 Ve

Qs [Medical] 2142 3 0.0001***  0.45 X

Qs [Business] ~ 57.18 3 0.0000***  0.74 X

Qg [Business] 13.57 2 0.0011**  0.36 Ve

Table 2. Results of y? goodness-of-fit analyses comparing preference distributions over four transcript representations, directly
contrasting human and LLM distributions. Larger Cramér’s V indicates greater distributional divergence between humans and
the LLM. Results are shown for temperature, 7 = 1.0.

4.2 Study 2: Exploring LLMs as Proxies for Human Preferences

We conducted a follow-up study to examine whether LLMs can accurately model user preferences across fidelity
levels. LLMs are increasingly proposed as scalable proxies for human evaluation in social science and NLP tasks
[7, 64, 210], offering potential advantages for personalization: if LLMs could reliably predict which fidelity level
suits different users and contexts, they could inform default settings or provide recommendations without requiring
extensive human annotation. However, our results reveal important limitations to this approach, suggesting that
while LLMs may be useful for generating candidate transcripts across the spectrum, preference modeling itself
requires human judgment.

We created N=52 personas aligned with the respondents from our study, according to their self-identified
professional expertise (see Appendix for preliminary study questions P1-P3), and add a format instruction to control
the output format [162]:

Respond as a person who [(P1) does/does not] work in automatic speech recognition
technology, L[(P2) does/does not] work in STEM (science, technology engineering,
mathematics), and L[(P3) has legal expertise/has medical expertise/does not have

legal or medical expertise]. Respond only with the letter for the answer choice.

The format instruction corresponds to our mapping of the four categorical options onto ordinal values following

a uniform distribution, which assumes an equidistant spacing of verbatimicity:
A=1 ( Verbatim ), B=2 ( Non-Verbatim ), C=3 ( Enhanced ), D=4 ( Bullet Points )

For each persona, we asked Q1-Q6 from our user study (detailed in Appendix 4.1.2). For each question, we
concatenate the text data to the prompt as an alternative to Ul-based interaction as in our user study (detailed in
Appendix F). We prompt with the same persona-question pair three times to account for seed-based variability,
shown as Ri on our figure. We used gpt-5.1-2025-11-13 with default temperature, 7 = 1.0, and we used the
developer role to control the LLM persona and response format, and the user role for the study questions.> We

conduct an ablation study of 7 = {0.5,1.0, 1.5}, shown in Appendix F.2, finding similar results to those in Figure 3b.

3A limitation of our LLM study is potential response bias, as research has shown LLMs exhibit ‘yes bias’ in grammatical judgments [42]. Future work
should explore prompt variations and more nuanced preference elicitation methods to better understand the relationship between LLM and human
preferences in transcript evaluation.
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4.2.1  How much do LLM responses vary per persona? To summarize consistency across personas p for each question,
we report the per-question pooled standard deviation, s, (Q;), where R = 3 for the 3 rounds, n, = 52 for 52 personas

responding each round, and s2(Q;) is the sample variance of persona responses for question Q; in round r:*

S5 (nr = 1) $7(Q0)
2521 (nr - 1)
We report results in Figure 3b. Lower values of s, (Q;) indicate that personas produce consistent responses across

Sp(Qi) =

rounds - e.g, if a persona responds with {A, A, A} for a question, then s,(Q;) = 0 — while higher values reflect
inconsistency in responses - e.g., {4, C, A}. Overall, persona responses are largely stable (s, (Q;) < 0.60) for 5/6
questions. Nonzero variability occurs for 4/6 of the questions (s, (Q;) > 0.0 for Q1, Q2, Q3, Q5), likely reflecting
sensitivity to temperature and other sampling hyperparameters® — highlighting the value of running multiple

inference rounds across hyperparameters to assess response stability in LLM-as-a-proxy experimental designs.®

4.2.2 Do users and LLMs have different preference distributions? To examine whether LLM and human responses
follow similar patterns, we compare the distributions shown in Figures 3a and 3b using a y? test of independence for
contingency tables,” report the results in Table 2, with an extended discussion in Appendix D. Our results indicate
that LLMs and humans agreed on the most preferred representation in only 3 of 6 questions (Q1, Q3, Q6),
revealing substantial divergence even at the level of top choices. Moreover, even when top choices aligned,
LLMs produced more extreme or homogenized distributions than humans, converging strongly on a single
representation type (e.g., consistently selecting Bullet Points for Business tasks), whereas human preferences are
more diverse and context-sensitive. Chi-squared analyses confirm that these differences are statistically significant
across all six questions (all p < 0.01). High Cramér’s V values across all six questions also show that LLMs converge

prematurely on single fidelity levels where humans remain contextually pluralistic.

4.3 Agency-Aware Design Recommendations

Discussion. The results indicate that optimal transcript representation is highly context-sensitive, varying not only
across domains but across tasks within the same domain. Even within Business scenarios, deadline assessment
(Q5) favored Enhanced transcripts, whereas action item identification (Q6) strongly preferred Bullet Points ,
demonstrating that fidelity requirements are primarily task-driven rather than domain-determined.

These findings challenge STT evaluation practices relying on universal accuracy metrics like WER. Our results
show that optimal representations depend on context: verbatim transcripts may be indispensable for assessing
witness confidence in legal depositions, while bullet-point summaries better support physicians scanning triage
notes. This reveals a fundamental limitation of WER - they assume a single “correct” representation exists when
transcript value depends on intended use.

Importantly, the LLM study highlight limitations in using LLMs as proxies for human preference. Although LLMs
matched the most-preferred human representation in some cases (3/6 questions), their preference distributions were

consistently more concentrated, often exhibiting near-exclusive selection of a single representation. LLMs amplify

“Note that because the sample size is stable across personas (n, = 52 always for the R = 3 rounds in our study), the pooled standard deviation reduces
to taking the square root of the arithmetic mean of the per-round variances. We include the full formula in our main results for generalizability.
5See Appendix F.2 for an ablation study of temperature, 7 = {0.5, 1.0, 1.5}. As shown in this study, sp (Q;) remains low across 7 values.

® Another approach for future work is developing specialized LLM-based annotation frameworks that explicitly model uncertainty in preference
judgments [64].

"We set Hy: The distribution of responses is the same for users and LLMs, and Ha: The distributions differ. Significance levels are reported at the
P <05, p <0.01(7), p <0.001 (**) levels.
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professional roles to extremes rather than capturing the flexible, context-sensitive human expertise, suggesting
preference modeling must remain grounded in actual user data rather than algorithmic proxies.

Design Recommendations. We synthesize these insights into four key recommendations:®

> R1: Support multi-fidelity interaction. As shown in Figure 3a, no single representation dominates across all
questions: while some tasks elicit higher levels of convergence (e.g., Q6), others distributed more evenly across
multiple verbamicities (e.g., Q4). SpeechSpectrum interfaces should therefore allow users to flexibly choose among
verbamicities, rather than enforcing a single-output paradigm.

> R2: Incorporate task-aware defaults. In cases where Figure 3a shows plurality agreement (e.g., Q2, Q3, and Q6
strongly show Bullet Points as the preferred representation), interfaces could streamline user effort by providing
task-aware defaults that match common preferences. As shown in Figure 3b, LLMs can approximate these preferences
in only some cases; at the same time, defaults must remain adjustable to preserve user agency.

> R3: Prioritize task-level defaults over domain heuristics. Across both human and LLM results shown in
Table 1, preference patterns vary more reliably by task than by domain. Even within the same domain, different
tasks elicit distinct preference structures (e.g., Q1 vs. Q2 in Legal ), ranging from weakly concentrated to strongly
dominant distributions. SpeechSpectrum interfaces should therefore condition transcript defaults and affordances
on task intent (e.g., assessment, extraction, verification) rather than relying on coarse domain-level assumptions.
> R4: Provide educational scaffolding. Tasks with more diffuse distributions (e.g., Q4 in Figure 3a) suggest
that users may be uncertain about which representation best fits the task. Interfaces could incorporate educational
scaffolding — such as interactive examples or lightweight guidance - to help users develop intuition about when to
select different fidelities.

5 Conclusion

Speech-to-text systems now pervade everyday technologies, yet they continue to impose rigid transcription choices
that often fail to reflect the variability of users’ needs. Our work positions this not as a technical limitation but as
an accountability gap with disparate impacts. STT systems used in legal and medical contexts systematically fail
speakers from marginalized communities — including speakers of non-standard dialects [217] and patients with
clinical speech impairments [130] - yet these users lack agency over how their speech is represented. SpeechSpectrum
addresses this by enabling user control over transcript fidelity, providing a mechanism for users to navigate system
limitations and contest representational decisions. While this cannot eliminate underlying performance disparities,
it redistributes control from system designers to affected users, which is particularly consequential for populations
who bear the greates harms from STT system failures. With SpeechSpectrum, we introduced a continuum-based
framework that repositions transcription as a spectrum rather than a single outcome.

Looking forward, our findings suggest concrete directions for more user-centered speech systems: ones that
flexibly present multiple transcription fidelities, expose choice to the user, and adapt to context rather than enforcing
a single “correct” output. More fundamentally, SpeechSpectrum repositions questions of transcription fidelity as
matters of user agency and algorithmic accountability. When systems impose representational choices without user
input, they make normative judgments about communicative legitimacy — determining which speech features are
preserved as meaningful and which are discarded as noise. By granting users explicit control over these choices, we
distribute agency over consequential representational decisions rather than concentrating it in the hands of system

designers.

8 Additional technical recommendations (R5-R9) addressing system architecture, evaluation methodology, and data collection are provided in
Appendix G.

Manuscript submitted to ACM



771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813

814

816
817
818
819
820
821
822
823
824
825

SpeechSpectrum: A Linguistic Fidelity Spectrum for STT 15

Generative Al Usage Statement

This study responsibly employed Al technologies to enhance writing clarity such as refining sentence structure

and assist with technical tasks such as LaTex table formatting and equation typesetting. All substantive intellectual

contributions such as philosophical formalization and experimental design were produced by the authors.
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Fig. 4. Taxonomy of Current Automatic Speech Recognition (ASR) Applications Showing Implicit Fidelity Choices.
Example applications are categorized by interaction modality (One-Way Speech Capture vs. Conversational) and typical verba-
timicity requirements. Current systems make these fidelity choices at design time without user control, motivating the need for

the SpeechSpectrum framework.
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A Technical Clarifications on Verbatimicity and Spectrum Components

This appendix provides technical details on key concepts introduced in §3, including definitional clarifications, scope
limitations, and orthogonal features that can be incorporated across multiple points of the SpeechSpectrum.

The concept of verbatimicity — defined in the main text as the degree to which textual output preserves the
structural, lexical, and paralinguistic characteristics of the original speech signal - relates to but differs from existing
concepts in forensic linguistics and translation studies. Verbatimicity differs from (de)naturalized transcription in
forensic contexts [121]. While both concepts acknowledge that transcription involves representational choices,
(de)naturalized transcription focuses primarily on legal admissibility and evidentiary standards in courtroom settings.
In contrast, verbatimicity emphasizes user-controlled representation across diverse contexts beyond legal applications,
treating fidelity as a designable parameter rather than a fixed procedural requirement. Verbatimicity relates to
but extends beyond the concept of fidelity in translation studies. While fidelity in translation studies typically
refers to faithfulness to source meaning or form along a single dimension - such as semantic equivalence versus
structural preservation — verbatimicity specifically captures the degree of preservation across multiple simultaneous
dimensions: lexical choice, syntactic structure, and paralinguistic features. This multidimensional approach reflects
the complexity of cross-modal translation from speech to text, where decisions about one dimension (e.g., removing
disfluencies) may interact with others (e.g., loss of prosodic information signaled through hesitations).

As noted in §3.2, the paralinguistic level represents the highest verbatimicity point on the SpeechSpectrum.
However, standard text-based representations have inherent limitations in capturing the full richness of paralinguistic
signals. While standard text can approximate some paralinguistic features through punctuation, capitalization, or
emoticons [132], full preservation often requires additional annotation systems beyond conventional orthography.
Higher-fidelity representations exist beyond our scope — such as International Phonetic Alphabet (IPA) phonetic
transcription or detailed prosodic annotation systems — but these serve narrower research purposes and typically
exhibit low inter-transcriber reliability due to their complexity and specialized nature. Our framework focuses on
representations most relevant to everyday STT applications, balancing expressiveness with practical usability. For
specialized research contexts requiring maximal acoustic detail, domain-specific annotation schemes (e.g., ToBI for
prosody, CA transcription conventions for conversation analysis) remain more appropriate than general-purpose
STT systems.

We use the term “disfluencies” for typical speech production phenomena in normal conversation, following
speech technology literature. This differs from “dysfluencies,” which refers to speech disruptions characteristic of
speech disorders such as stuttering or cluttering [126]. This terminological distinction is important: disfluencies
are universal features of spontaneous speech production that occur across all speakers; dysfluencies are clinical
manifestations that may indicate underlying communicative impairments requiring therapeutic intervention. In the
context of SpeechSpectrum, we focus on disfluencies as natural features of everyday speech rather than pathological
markers, though we acknowledge that systems designed for clinical populations (e.g., speech-language pathology
applications) may require different treatment of these phenomena.

Consensus on the precise definition of disfluency remains elusive in both linguistics and speech technology
[45, 111, 170]. What counts as a hesitation, filler, or repair varies by speaker, context, and annotator perspective. This
definitional ambiguity has practical implications for SpeechSpectrum systems. Discourse markers like “like” or “you
know” may be considered disfluent noise in one context (e.g., formal presentations) but pragmatically meaningful
in another (e.g., casual conversation where they serve discourse-structuring functions). Similarly, repetitions may
represent planning disfluencies or emphatic stress depending on prosodic realization. This variability contributes to

transcription style variation across human annotators and ASR systems. Rather than enforcing a single definition,
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SpeechSpectrum embraces this multiplicity: different fidelity levels can accommodate different interpretations of
what constitutes meaningful versus expendable speech features, with users controlling which interpretation best
serves their needs.

Speaker diarization - the partitioning of audio by speaker identity [75, 149, 193] - is an important feature for multi-
party conversations that is technically orthogonal to verbatimicity. While not a core component of the verbatimicity
spectrum itself, diarization can be incorporated at any fidelity level, making it a valuable user-controllable feature
for SpeechSpectrum systems. SpeechSpectrum systems should treat diarization as an independent, user-controllable
feature that can be toggled on or off at any fidelity level depending on task requirements. This independence reflects
a broader design principle: some representational features (like diarization, timestamps, or confidence scores) operate

orthogonally to verbatimicity and should be configurable separately rather than bundled into specific fidelity levels.

B Case Studies

This appendix section provides concrete examples of how current STT applications implicitly implement different
verbatimicity levels, validating the need for the SpeechSpectrum framework presented in the main text.

Current STT applications already operate at different points along the verbatimicity spectrum, but these choices
are made implicitly at design-time without user control. Figure 4 presents our taxonomy of STT applications,
revealing how different domains and interaction modalities naturally gravitate toward different fidelity levels. This
analysis demonstrates both the validity of our framework and the limitations of current one-size-fits-all approaches.

Legal and Forensic Applications. Legal contexts demand maximum fidelity to protect the integrity of records. Court

reporting systems [51] and deposition transcription services [27, 138, 155, 194] preserve disfluencies, hesitations,
and even paralinguistic features because these elements carry legal significance. A witness’s “um” or false start
might indicate uncertainty relevant to credibility assessment. Recent work on legal interview documentation [178]
further demonstrates that verbatim transcription is not merely technically achievable but professionally mandatory
in certain contexts.

Professional Documentation. Professional settings like medical dictation and meeting transcription occupy a middle

ground. Medical applications demonstrate this complexity clearly: clinical dictation systems [55, 172] prioritize
semantic accuracy and readability, actively cleaning disfluencies to produce professional documentation, while
speech-language pathology applications require comprehensive disfluency preservation for therapeutic analysis.
Projects like TalkBank [122] and CALLHOME [1] demand higher fidelity, preserving precise timing, overlaps,
and paralinguistic features for research purposes. Meeting transcription platforms [145] similarly navigate this
balance, often providing both real-time “rough” captioning and post-processed “clean” versions, acknowledging
that immediate access and polished records serve different needs. Journalistic interview transcription prioritizes
readability and semantic content while maintaining speaker authenticity necessary for accurate quote attribution.

Research and Academic Applications. Academic research contexts can demonstrate highly granular verbatimicity

requirements. Discourse analysis demands fine-grained pause notation, overlap marking, and detailed prosodic
annotation to study conversational dynamics [46]. Sociolinguistic research requires phonetic detail expressed in
orthography, accent preservation, and paralinguistic markers for language documentation and dialectal studies [49].
Ethnographic fieldwork may need environmental sound notation and multilingual code-switching preservation that
standard ASR systems cannot provide.

Personal Productivity Tools. Voice journaling apps [77, 173] and note-taking applications [50, 63] prioritize usability

over strict fidelity. Voice memo systems [9, 72] actively clean speech to produce readable text, assuming users want
polished output rather than verbatim records. However, this assumption may not hold for all users or contexts — a

researcher documenting field observations might need different fidelity than someone creating a shopping list.
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Accessibility Systems. Accessibility applications reveal complex fidelity requirements. Live captioning systems

(2, 15, 191, 203] must balance multiple competing needs: speed, accuracy, readability, and information richness.
Recent work on onomatopoeia transcription [94] extends beyond traditional text to convey paralinguistic information
through creative representations (e.g., “bu u u wa ang” for engine sounds). Captioning tool OptiSub [108] recognizes
that even presentation format affects accessibility, offering customizable display options with pause-based chunking
for naturalistic caption breaking. Semi-automated approaches [101] have been proposed to mitigate high word error
rate in real-time captioning. These innovations implicitly acknowledge that accessibility is not monolithic - different
users need different representations.

Task-Oriented Assistants. Smart speakers [6, 67, 141], voice assistants [66], and smart glasses [71, 131] operate at

the low-verbatimicity end of the spectrum. These systems aggressively compress speech to extracted intents and
entities, discarding most linguistic detail. Voice assistants in cars [30, 200] face additional constraints of safety and
attention management. Smart watches [8, 62] and smart TV controls [28] further demonstrate how constrained
interaction models fundamentally differ from natural conversation — users must learn specific command structures
the system understands. This is reflected in user interactions, as user interactions with computer systems are
noticeably more fluent than human-human interactions [146].

Dialogue Systems. Conversational Al platforms and agents supporting users with disabilities [90, 116] demonstrate
more sophisticated fidelity management. Automated customer assistance systems [127, 216] must balance maintaining
conversation flow with accurate understanding, implicitly adjusting their processing based on context. Voice user
interfaces in automated phone systems and call centers represent another application domain operating at low
verbatimicity, where systems must extract caller intent while managing conversation flow efficiently [112].

Real-Time Communication. Systems providing real-time cross-language communication demonstrate complex

fidelity decisions, navigating between source fidelity and target language naturalness. Real-time interpretation
services [31, 131, 191] must balance accuracy with temporal constraints while preserving communicative intent
across linguistic boundaries. Educational gaming and tutoring systems [86, 211, 214] represent a specialized case,
requiring enough detail to assess pronunciation and fluency, particularly for language learners requiring accent
understanding and accurate transcription of fast speech.

Asynchronous Communication. Applications for delayed message review have distinct fidelity requirements from

real-time interaction. Voicemail transcription [11] typically provides clean, readable text since users review messages
asynchronously and prioritize comprehension over production artifacts. Voice chat transcription in messaging apps
(10, 73, 85, 201] faces different constraints — balancing processed speech with accuracy while preserving enough
speaker personality to maintain social context in casual communication.

This examination of current STT applications reveals a fundamental paradox: while the industry has already
evolved to provide different verbatimicity levels across different application domains, individual users remain locked
into whatever fidelity level designers predetermined for their specific use case. A lawyer receives verbatim transcripts
in court reporting software but cleaned text in meeting transcription tools, regardless of whether those defaults
match their needs in that moment. The implicit recognition that different contexts require different fidelity levels —
evident in the diversity of approaches across our taxonomy - makes the absence of user control even more striking.
To understand whether users would benefit from explicit control over these fidelity choices, we conducted empirical

studies examining user preferences and task performance across different verbatimicity levels.
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SpeechSpectrum Legal Medical Business

A
A 4

Verbatim Non-Verbatim Enhanced Bullet Points

Well, , | remember that day pretty clearly because, um, it was raining really hard and, and | was driving to work
around, oh, maybe seven-thirty in the morning?

And, uh, | was going down Main Street H

when | saw, | saw this car, a blue sedan | think it was, come speeding through the intersection without, without
stopping at the red light.

*]

And then, then there was this loud crash sound and I | pulled over to see what happened.

(]

‘The, the driver of the blue car, he got out and he was, he was yelling something but | couldn't really hear what he
was saying because of therain and, and all the commo - commotion. Actualy, walt | hink it was a Hondl, no, (]
maybe a Toyota, I'm not sure about the make.

‘SpeechSpectrum Legal Medical Business
< >
< >
Verbatim Non-Verbatim Enhanced Bullet Points
I remember that day pretty clearly because it was raining really hard and | was driving to work around seven-
thirty in the morning. ]
= 1 was going down Main Street )
[« ] when saw this car, a blue sedan come speeding through the ntersection ithout stopping at the red ight. | |
[« Then there was this loud crash sound and | pulled over to see what happened. 5]
‘The driver of the blue car got out and he was yelling something but | couldn't really hear what he was saying
[ Jvecause of the ain and all the commtion. 1 think it was a Honda, maybe a Toyota, I not sure about the make. | |
SpeechSpectrum Legal Medical Business
< >
< >
Verbatim Non-Verbatim Enhanced Bullet Points
[]  1clearty remember that day because it was raning heaviy and | was drving to work around 730 AM. (5]
« Iwas going down Main Street B
Il when | observed a blue sedan speed through the intersection without stopping at the red light. )
« Following the crash, | pulled over to assess the situation. 5]
The driver of the blue car exited and was shouting, but | could not hear clearly due to the rain and commotion. |
[ believe it was a Honda or Toyota, though | am uncertain of the exact make. hd
SpeechSpectrum Legal Medical Business
< >
< >
Verbatim Non-Verbatim Enhanced Bullet Points
©  Incident occurred during heavy rain, ~7:30 AM

« Witness driving on Main Street to work
- Blue sedan ran red light at high speed
IT « Collision occurred, witness pulled over

€] + Blue car driver exited vehicle, yelling inaudibly

Fig. 5. SpeechSpectrum instantiation for the user study with an illustrative transcript in the legal domain. The
SpeechSpectrum interface positions transcript versions along the fidelity spectrum (Verbatim, Non-Verbatim, Enhanced, Bullet
Points), navigable via clickable labels at the top of the screen. Users can also switch between three example domains — Legal,
Medical, and Business — via the top-right menu. Each fidelity level shows five distinct transcript examples to demonstrate the
range of representational choices at that verbatimicity level. By surfacing multiple representations within the same interactive
space, the prototype demonstrates how SpeechSpectrum operationalizes user-controlled fidelity, allowing participants to explore

how different transcript forms better support different tasks and contexts.
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C SpeechSpectrum Examples

Anon.

All transcript variants used in the study are shown in Table 3: The set of transcript representations used in the user

study across four fidelity levels ( Verbatim , Non-Verbatim , Enhanced , Bullet Points )inthe Legal , Medical ,

and Business domains. The study included both handcrafted transcripts (N = 23) and SpeechSpectrum-generated

transcripts (N = 29; generation details in Appendix H), for a total of N = 52 participants.

Table 3. All transcript variants provided in the user study.

Handcrafted Text

speechspectrum-Generated Text

Domain Granularity
Legal (A) Verbatim
Legal (B) Non-Verbatim
Legal (C) Enhanced
Legal (D) Bullet Points

Well, I, I remember that day pretty clearly because,
um, it was raining really hard and, and I was driving
to work around, oh, maybe seven-thirty in the morn-
ing? And, uh, I was going down Main Street when I
saw, I saw this car, a blue sedan I think it was, come
speeding through the intersection without, without
stopping at the red light. And then, then there was
this loud crash sound and I, I pulled over to see what
happened. The, the driver of the blue car, he got out
and he was, he was yelling something but I couldn’t
really hear what he was saying because of the rain
and, and all the commo - commotion. Actually, wait,
I think it was a Honda, no, maybe a Toyota, I'm not
sure about the make.

I remember that day pretty clearly because it was
raining really hard and I was driving to work around
seven-thirty in the morning. I was going down Main
Street when I saw this car, a blue sedan, come speed-
ing through the intersection without stopping at the
red light. Then there was this loud crash sound and I
pulled over to see what happened. The driver of the
blue car got out and he was yelling something but
I couldn’t really hear what he was saying because
of the rain and all the commotion. I think it was a
Honda, maybe a Toyota, I'm not sure about the make.
I clearly remember that day because it was raining
heavily and I was driving to work around 7:30 AM.
I was going down Main Street when I observed a
blue sedan speed through the intersection without
stopping at the red light. Following the crash, I pulled
over to assess the situation. The driver of the blue car
exited and was shouting, but I could not hear clearly
due to the rain and commotion. I believe it was a
Honda or Toyota, though I am uncertain of the exact
make.

* Incident occurred during heavy rain, ~7:30 AM

* Witness driving on Main Street to work

* Blue sedan ran red light at high speed

* Collision occurred, witness pulled over

* Blue car driver exited vehicle, yelling inaudibly

Well, I, I remember that day pretty clearly because, um,
it was raining really hard and, and I was driving to work
around, oh, maybe seven-thirty in the morning? And, uh,
I was going down Main Street when I saw, I saw this car,
a blue sedan I think it was, come speeding through the
intersection without, without stopping at the red light. And
then, then there was this loud crash sound and I, I pulled
over to see what happened. The, the driver of the blue car,
he got out and he was, he was yelling something but I
couldn’t really hear what he was saying because of the rain
and, and all the commo - commotion. Actually, wait, I think
it was a Honda, no, maybe a Toyota, I'm not sure about the

make.

I remember that day pretty clearly because it was raining
really hard and I was driving to work around maybe seven-
thirty in the morning. I was going down Main Street when
I saw this car, a blue sedan I think it was, come speeding
through the intersection without stopping at the red light.
Then there was this loud crash sound and I pulled over to
see what happened. The driver of the blue car got out and
he was yelling something but I couldn’t really hear what
he was saying because of the rain and all the commotion.
Actually, I think it was a Honda, no, maybe a Toyota, 'm
not sure about the make.

I remember that day clearly because it was raining heavily
and I was driving to work at around seven-thirty in the
morning. I was heading down Main Street when I saw a blue
sedan—possibly a Honda or maybe a Toyota—speed through
the intersection without stopping at the red light. I heard
a loud crash, so I pulled over to see what had happened.
The driver of the blue car got out and started yelling, but I
couldn’t make out what he was saying because of the rain

and the general commotion.

- It was raining heavily.

- The narrator was driving to work at around 7:30 a.m.

- They were heading down Main Street.

- They saw a blue sedan, possibly a Honda or Toyota, speed
through an intersection without stopping at a red light.

- They heard a loud crash and pulled over to see what had
happened.

- The driver of the blue car got out and started yelling.

- The narrator could not understand what the driver was
saying because of the rain and general commotion.
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Handcrafted

speechspectrum-Generated

Medical

Medical

Medical

Medical

Business

(A) Verbatim

(B) Non-Verbatim

(C) Enhanced

(D) Bullet Points

(A) Verbatim

Okay, so, um, the patient came in today and, uh, she
was complaining of, you know, chest pain that’s been
going on for about, let’s see, um, three days now.
And, uh, she said it gets worse when she, when she
breathes deeply or, or coughs. So I, I examined her
and found some, uh, some tenderness in the, the in-
ter — intercostal muscles on the right side. Her vital
signs were, um, let me think, blood pressure was
one-twenty over eighty, heart rate was, was seventy-
two, and temperature was normal at, uh, ninety-eight
point six. I'm thinking this is probably, you know,
costochon - costochondritis rather than anything,
anything more serious like a cardiac event.

The patient came in today and she was complaining
of chest pain that’s been going on for about three
days now. She said it gets worse when she breathes
deeply or coughs. I examined her and found some
tenderness in the intercostal muscles on the right
side. Her vital signs were blood pressure was one-
twenty over eighty, heart rate was seventy-two, and
temperature was normal at ninety-eight point six.
I'm thinking this is probably costochondritis rather
than anything more serious like a cardiac event.
The patient came in today complaining of chest pain
that has been ongoing for three days. She reports
it worsens with deep breathing and coughing. On
examination, I found tenderness in the intercostal
muscles on the right side. Vital signs: blood pressure
120/80, heart rate 72, temperature 98.6°F. Assessment

is likely costochondritis rather than a cardiac event.

* Patient: 3-day chest pain history

* Triggers: deep breathing, coughing

* Physical findings: right intercostal tenderness
* Vitals: BP 120/80, HR 72, temp 98.6°F

* Diagnosis: likely costochondritis vs cardiac

So, um, we need to talk about the quarterly numbers
and, and where we stand with the project timeline. I
know, I know we’ve been behind schedule but, but
Sarah’s team has been working really hard on the,
the user interface redesign. And, uh, Mike, didn’t you
say something about the database issues being, being
mostly resolved now? Or was that the ser - server
issues? No, database, right. I think, I think we’re in
a much better position than we were last month but
we still need to, to figure out the budget allocation
for the next quarter and, and maybe hire one or two
more developers if, if we want to meet the December
deadline. Actually, was it December or January? I
think December.

Okay, so, um, the patient came in today and, uh, she was
complaining of, you know, chest pain that’s been going
on for about, let’s see, um, three days now. And, uh, she
said it gets worse when she, when she breathes deeply or,
or coughs. So I, I examined her and found some, uh, some
tenderness in the, the inter — intercostal muscles on the
right side. Her vital signs were, um, let me think, blood
pressure was one-twenty over eighty, heart rate was, was
seventy-two, and temperature was normal at, uh, ninety-
eight point six. I'm thinking this is probably, you know,
costochon — costochondritis rather than anything, anything
more serious like a cardiac event.

The patient came in today and she was complaining of chest
pain that’s been going on for about three days now. She
said it gets worse when she breathes deeply or coughs. I
examined her and found some tenderness in the intercostal
muscles on the right side. Her vital signs were blood pres-
sure one-twenty over eighty, heart rate seventy-two, and
temperature was normal at ninety-eight point six. I'm think-
ing this is probably costochondritis rather than anything
more serious like a cardiac event.

The patient presented today with a three-day history of
chest pain that worsens with deep inspiration and coughing.
On examination, there was tenderness of the intercostal
muscles on the right side. Vital signs were as follows: blood
pressure 120/80 mmHg, heart rate 72 beats per minute, and
temperature 98.6°F. The clinical picture is most consistent
with costochondritis rather than a more serious condition
such as a cardiac event.

- Patient has a three-day history of chest pain.

- Chest pain worsens with deep inspiration and coughing.
- Physical examination shows tenderness of the intercostal
muscles on the right side.

- Vital signs: blood pressure 120/80 mmHg, heart rate 72
bpm, temperature 98.6°F.

- Clinical picture is most consistent with costochondritis.

- Costochondritis is considered more likely than a serious
condition such as a cardiac event.

So, um, we need to talk about the quarterly numbers and,
and where we stand with the project timeline. I know, I
know we’ve been behind schedule but, but Sarah’s team has
been working really hard on the, the user interface redesign.
And, uh, Mike, didn’t you say something about the database
issues being, being mostly resolved now? Or was that the
ser — server issues? No, database, right. I think, I think we’re
in a much better position than we were last month but we
still need to, to figure out the budget allocation for the next
quarter and, and maybe hire one or two more developers if,
if we want to meet the December deadline. Actually, was it
December or January? I think December.

Continued on next page
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Handcrafted speechspectrum-Generated

Business (B) Non-Verbatim  We need to talk about the quarterly numbers and ~ We need to talk about the quarterly numbers and where we
where we stand with the project timeline. I know  stand with the project timeline. I know we’ve been behind
we’ve been behind schedule but Sarah’s team has  schedule, but Sarah’s team has been working really hard on
been working really hard on the user interface re-  the user interface redesign. Mike, didn’t you say something
design. Mike, didn’t you say something about the  about the database issues being mostly resolved now? Or
database issues being mostly resolved now? I think  was that the server issues? No, database, right. I think we’re
we’re in a much better position than we were last  in a much better position than we were last month, but we
month but we still need to figure out the budget allo-  still need to figure out the budget allocation for the next
cation for the next quarter and maybe hire one ortwo  quarter and maybe hire one or two more developers if
more developers if we want to meet the December ~ we want to meet the December deadline. Actually, was it
deadline. December or January? I think December.

Business (C) Enhanced We need to discuss the quarterly numbers and our ~ We need to review the quarterly numbers and assess our
current position on the project timeline. We have  position against the project timeline. Although we have
been behind schedule, but Sarah’s team has been  been behind schedule, Sarah’s team has made significant
working hard on the user interface redesign. Mike  progress on the user interface redesign. Mike has reported
mentioned that the database issues are mostly re- that the database issues are now mostly resolved, which
solved. We are in a better position than last month, puts us in a much better position than we were in last
but we still need to determine budget allocation for =~ month. However, we still need to determine the budget
next quarter and consider hiring additional develop-  allocation for next quarter and consider hiring one or two
ers to meet the December deadline. additional developers if we want to meet the planned De-

cember deadline.

Business (D) Bullet Points * Review quarterly numbers & project timeline - Review the quarterly numbers and assess position relative

* Behind schedule but Ul redesign progressing well
* Database issues mostly resolved

* Improved position vs. last month

* Action items: budget allocation, potential hiring for

December deadline

to the project timeline

- Project has been behind schedule

- Sarah’s team has made significant progress on the user
interface redesign

- Mike reports the database issues are now mostly resolved
- Current situation is much better than last month

- Budget allocation for next quarter still needs to be deter-
mined

- Hiring one or two additional developers is being consid-

ered to meet the planned December deadline

D Additional Human vs. LLMg; Preference Distribution Details

Table 2 compares human and LLMg; preference distributions across six task-domain scenarios and reveals systematic
divergence in how transcript fidelity is valued. For all questions, y? tests indicate statistically significant differences
between human and LLM distributions (all p < 0.0023**), demonstrating that LLM preferences do not mirror human
judgment patterns. Top-choice alignment (v') occurs in only three of six cases (Q1, Q3, Q6), and even in these
aligned scenarios, moderate to high Cramér’s V and nontrivial Jensen-Shannon divergence indicate substantial
distributional mismatch. In the remaining cases (Q2, Q4, Q5), the LLM top choice contradicts the human top choice
(X), with the largest divergence observed for business deadline assessment (Q5), where both effect size (V = 0.74) and
JSD are highest. Positive entropy differences across all tasks (AH > 0) show that human preferences are consistently
more diffuse and heterogeneous, whereas LLM responses are more concentrated and peaked. Taken together, these
results show that even when LLMs occasionally select the same top option as humans, they fail to reproduce the
overall shape, spread, and uncertainty of human preference distributions, highlighting the limits of LLMs as proxies

for user judgment in fidelity-sensitive speech-to-text design.

E Additional User Study Details

We present the results in Table 4. We also show the introduction text for the user study in Figure 6.
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Category Response Count Percent
ASR Technology  Yes 7 13.5%
No 45 86.5%
STEM Yes 44 84.6%
No 8 15.4%
Domain Expertise Legal 7 13.5%
Medical 6 11.5%

Table 4. Breakdown of participant demographics (N = 52). The majority of participants did not work in STT technology and most
reported STEM backgrounds. Roughly one-third total reported domain-specific expertise in legal or medical contexts.

First, open your browser, and navigate to https://SpeechSpectrum.org.

There are 4 points along the SpeechSpectrum — Verbatim, Non-Verbatim, Enhanced, Bullet Points — which
contain different versions of the same transcript. You can navigate the transcript versions by clicking on the
labels at the top of the screen, or by using the arrows within the individual boxes.

We provide 3 example transcripts: Legal, Medical, and Business. You can navigate to each of these examples
using the top right menu bar.

We will now ask you to perform a few tasks [enclosed in square brackets], and answer questions about your
experience and opinions related to SpeechSpectrum.

Fig. 6. Introduction text for our user study. This text is first displayed to users as part of the user study form.

The study involved voluntary surveys about non-sensitive topics in computer science. The research posed minimal

risk and collected no personally identifying information.

ASR  STEM Legal Medical N Q; [Legal] Q; [Legal] Qs [Medical] Q4 [Medical] Qs [Business] Qg [Business]
X X x X 1 Non-Verbatim Non-Verbatim Enhanced Enhanced Verbatim Bullet Points
X X X / 1 Verbatim Bullet Points Bullet Points Non-Verbatim Non-Verbatim  Bullet Points
X X X 6 Enhanced Bullet Points ~ Bullet Points ~ Non-Verbatim  Bullet Points Bullet Points
X X X 32 Verbatim Bullet Points  Bullet Points ~ Non-Verbatim Enhanced Bullet Points
X v X v 5 Verbatim Enhanced Bullet Points ~ Non-Verbatim Enhanced Bullet Points
/ \/ x X 6 Verbatim Bullet Points Bullet Points Enhanced Enhanced Bullet Points
/X v 1 Verbatim Bullet Points ~ Non-Verbatim Verbatim Non-Verbatim  Bullet Points

Table 5. Professional demographic characteristics sometimes yield differing top-choice profiles. Unique participant
demographics are indicated by profiles, e.g., [ASR=X, STEM=X, Legal=v/', Medical=X ] indicates that there were N = 6 of the 52
participants who did not have ASR, STEM, or Medical expertise, and their dominant preference for Q; [Legal] was Enhanced .

Note that these participant demographics are more specific than those in Table 4. The sample sizes are small (for three profiles,
N = 1), hence future work should further investigate the impact of specific professional profiles.

F Additional LLM Study Details

In this section, we provide additional details for the LLM study.
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F.1 Text Structure

Figure 7 illustrates the prompt structure used in the LLM study, which differs from the interface-based presentation
used in the user study. Rather than interacting with transcript variants through a graphical interface, the LLM was
provided with all relevant information as a single textual prompt.

Each prompt consisted of three components. First, we included a persona-conditioning instruction that specified
whether the model should respond as someone with experience in STT, experience in STEM fields, and/or legal or
medical expertise. This instruction was used to align the model’s responses with the same professional dimensions
collected from human participants.

Second, we provided a domain-specific task description (legal, medical, or business), framing the downstream
question the model was asked to answer. This task context mirrors the scenarios used in the user study but is
presented textually rather than through interactive navigation.

Third, we appended the four candidate transcript representations — Verbatim, Non-Verbatim, Enhanced, and
Bullet Points — each corresponding to a distinct position along the SpeechSpectrum. The model was instructed to
select the single transcript representation that would be most helpful for answering the given task and to respond
only with the letter corresponding to its choice (a format instruction), ensuring a controlled and comparable output
format.

This textual concatenation replaces the interactive election used in the user study and allows the LLM to evaluate
transcript representations solely through prompt-based reasoning. By holding transcript content constant and
varying only persona conditioning and task context, this structure enables a direct comparison between human

preference distributions and LLM-generated selections across fidelity levels.

Developer Instruction:

Respond as a person who [does/does not] work in automatic speech recognition technology,
[does/does not] work in STEM (science, technology engineering, mathematics), and [has
legal expertise/has medical expertise/does not have legal or medical expertise]. Respond
only with the letter for the answer choice.

User Input:

Imagine you are a doctor looking over a triage dictation provided by a nurse. Which
version of the transcript (i.e. point) is the most helpful for you to answer the following
question: What are the main symptoms the patient is exhibiting?

(A) VERBATIM: Okay, so, um, the patient came in today and, uh, she was complaining of,
you know. ..

(B) NON-VERBATIM: The patient came in today and she was complaining of chest pain that’s...
(C) ENHANCED: The patient came in today complaining of chest pain that has been ongoing...
(D) BULLET POINTS:

* Patient: 3-day chest pain history

* Triggers: deep breathing...

Fig. 7. Prompt used in the LLM study, combining persona conditioning, task context, and four alternative transcript
representations from which the model was instructed to select a single option. Presented with Q3, a medical example.
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F.2 Temperature Ablation Study

In this section, we conduct an additional ablation study on z = {0.5, 1.0, 1.5}, to determine the impact of temperature
on the LLM preferences. Results for 7 = 1.0 are available in the main paper, and results for 7 = 0.5, 1.5 are shown
here.

As shown in Figures 8 and 9, extreme LLM preference distributions remain extreme with varying 7 values.

Q1 [Legal]: Confidence Assessment Q2 [Legall: Event Details
5p(Qi)= 0.00 5p(Q))=0.59
R1(52) R2(52) R3(52)
50
a0
30 R3(28)
R2(25) R1Z6) ra(s)
s R321)
20
10
RIG) po) RIG)
(A) Verbatim (8) Non-Verbatim (C) Enhanced (D) Bullet Points (A) Verbatim (8) Non-Verbatim (C) Enhanced (D) Bullet Points
Q3 [Medicall: Symptoms Q4 [Medical]: Duration Precision
5p(Q)=0.00 sp(Q)=1.08
R1(52) R2(52) R3(52)
50
a0
30 R128) R2028) paga7)
20
R1014
19 R2013) p3r2) oy 20, B0
10 |
(A) Verbatim (8) Non-Verbatim (C) Enhanced (D) Bullet Points (A) Verbatim (8) Non-Verbatim (C) Enhanced (D) Bullet Points
Q5 [Business]: Deadline Assessment Q6 [Business]: Action Items
5p(Q))=0.11 5,(Q)= 0.00
R1(51) R2(52) R351) R1(52) R2(52) R3(52)
s0 [ I e
a0
0
20
10
A1) R30)
(A) Verbatim (8) Non-Verbatim (C) Enhanced (D) Bullet Points (A) Verbatim (B) Non-Verbatim (C) Enhanced (D) Bullet Points

Fig. 8. Results for 7 = 0.5.

G Components for Designing SpeechSpectrum Systems

This appendix provides technical guidance for implementing SpeechSpectrum systems. While the main body
establishes the framework and demonstrates its value through user studies, here we examine the architectural
components, evaluation methodologies, and data collection strategies that enable practical realization of multi-fidelity
STT interfaces. We present four additional design recommendations (R5-R9) that address technical implementation
concerns.

While SpeechSpectrum provides a conceptual framework for understanding STT as a continuum of represen-
tational choices, realizing this vision requires practical tools and architectures that can generate, transform, and
align transcripts across fidelity levels. We treat ASR, DRM, LLM, and SLM systems — detailed next — not simply as
technical models, but as design components that are important for enabling users to navigate and control their place
on the fidelity spectrum. Importantly, our findings from §4.2 show that while automated systems such as LLMs can
suggest fidelity preferences, ultimate control must remain with users, whose contextual understanding and personal
needs cannot be fully captured by algorithmic approaches.

This raises the practical challenge of how to technically implement systems that can fluidly generate multiple
representations along the verbatimicity spectrum. In this section, we examine how existing tools can be composed
into modular pipelines or end-to-end architectures, highlighting their trade-offs in flexibility, interpretability, and

user alignment. As shown in Figure 10, multiple pathways exist for producing different points on the SpeechSpectrum;
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(i) LLMR; vs. Uniform Preference Distributions for 7 = 0.5

Q; [Domain] x? df P V' Most Frequent Representation (p;) A[95% CI|
O [Legal] 468.00 3 0.0000°*  1.00 (A) Verbatim 1.00 [1.00, 1.00]
Q, [Legal] 12667 3 0.0000"*  0.52 (D) Bullet Points 0.06 [0.00, 0.33]

Qs [Medical] ~ 468.00 3 0.0000"*  1.00 (D) Bullet Points 1.00 [1.00, 1.00]

Q4 [Medical] 89.28 3 0.0000°*  0.44 (C) Enhanced 0.27 [0.04, 0.48]

Qs [Business] 452.21 3 0.0000"™*  0.98 (D) Bullet Points 0.96 [0.88, 1.00]

Qg [Business] 468.00 3 0.0000***  1.00 (D) Bullet Points 1.00 [1.00, 1.00]

(ii) Human vs. LLMg; Preference Distributions for 7 = 0.5

Q; [Domain] x? df P v Human A[95% CI| LLM A[95% CI|
O [Legal] 3647 3 0.0000"* 059 0.23 [0.02, 0.44] 1.00 [1.00, 1.00]
Q, [Legal] 8.02 3 0.0457° 028 0.35 [0.12, 0.56] 0.06 [0.00, 0.33]

Qs [Medical] 2790 3 0.0000°*  0.52 0.40 [0.17, 0.58] 1.00 [1.00, 1.00]

Q4 [Medical] 1934 3 0.0002°*  0.43 0.00 [0.00, 0.19] 0.27 [0.04, 0.48]

Qs [Business] 66.72 3 0.0000™*  0.80 0.25 [0.04, 0.42] 0.96 [0.88, 1.00]

Qs [Business] 1357 2 0.0011"  0.36 0.65 [0.44, 0.81] 1.00 [1.00, 1.00]

Table 6. For 7 = 0.5, results of y? goodness-of-fit tests and associated effect sizes evaluating (i) deviations from uniform preference
distributions and (ii) divergence between human and LLM preference distributions across four transcript types. For panel (i),
Cramér’s V quantifies global dispersion versus concentration of preferences across representations, with larger V indicating
greater concentration; in panel (ii), larger V indicates greater divergence between human and LLM distributions. A(Q;) = p1 — p2
denotes the local dominance gap between the most and second-most frequent representations, with larger values indicating
stronger local concentration. A [95% Cl] are estimated via nonparametric bootstrap resampling (10,000 iterations).
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Fig. 9. Results for 7 = 1.5.

Table 8 provides exemplars of these approaches. Our goal in this section is to provide a technical foundation for
understanding how SpeechSpectrum interfaces can be implemented. Rather than prescribing a single architecture,
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(i) LLMR; vs. Uniform Preference Distributions for 7 = 0.5

Q; [Domain] x* df P V' Most Frequent Representation (p;) A[95% CI|
O [Legal] 45221 3 0.0000"*  0.98 (A) Verbatim 0.96 [0.88, 1.00]
Q, [Legal] 9549 3 0.0000°*  0.45 (C) Enhanced 0.15 [0.00, 0.38]

Qs [Medical] ~ 460.05 3 0.0000"*  0.99 (D) Bullet Points 0.96 [0.88, 1.00]

Q4 [Medical] 3923 3 0.0000"*  0.29 (C) Enhanced 0.06 [0.00, 0.29]

Qs [Business] 359.54 3 0.0000**  0.88 (D) Bullet Points 0.77 [0.58, 0.92]

Q¢ [Business] 468.00 3 0.0000***  1.00 (D) Bullet Points 1.00 [1.00, 1.00]

(ii) Human vs. LLMEg; Preference Distributions for 7 = 0.5

Q; [Domain] x* df P v Human A[95% CI] LLM A[95% CI|
0 [Legal] 3318 3 0.0000*  0.56 0.23 [0.02, 0.44] 0.96 [0.88, 1.00]
Q; [Legal] 1016 3 00173 031 0.35 [0.12, 0.56] 0.15 [0.00, 0.38]

Q3 [Medical] 2484 3 0.0000*  0.49 0.40 [0.17, 0.58] 0.96 [0.88, 1.00]

Q4 [Medical] 1193 3 0.0076"  0.34 0.00 [0.00, 0.19] 0.06 [0.00, 0.29]

Qs [Business] 5194 3 0.0000°* 0.71 0.25 [0.04, 0.42] 0.77 [0.58, 0.92]

Qs [Business] 13.57 2 0.0011* 036 0.65 [0.44, 0.81] 1.00 [1.00, 1.00]

Table 7. For 7 = 1.5, results of y? goodness-of-fit tests and associated effect sizes evaluating (i) deviations from uniform preference
distributions and (ii) divergence between human and LLM preference distributions across four transcript types. For panel (i),
Cramér’s V quantifies global dispersion versus concentration of preferences across representations, with larger V indicating
greater concentration; in panel (ii), larger V indicates greater divergence between human and LLM distributions. A(Q;) = p1 — p2
denotes the local dominance gap between the most and second-most frequent representations, with larger values indicating
stronger local concentration. A [95% Cl] are estimated via nonparametric bootstrap resampling (10,000 iterations).

we survey the landscape of available components — ASRs, DRMs, LLMs, and SLMs - and examine their trade-offs.
This foundation is essential for designers to make informed architectural decisions based on their specific context,
whether prioritizing interpretability, performance, or user control. In operationalizing SpeechSpectrum, we recognize
the imperative to understand the underlying technology. In this section, we summarize the underlying technological
components, with the aim of bridging conceptual design with implementable systems.

Automatic Speech Recognition System (ASR). ASR models are used for translating the raw speech-audio waveform

to text transcriptions. A key challenge for ASR systems is the correct transcription of domain-specific keywords
[164, 166, 180]; decoding methods are often used to guarantee correctness of domain-specific keyword transcription,
but these methods are rigid and often rely on retrieved documents. ASR systems struggle to handle noisy, accented,
overlapping, stuttered, or fast® speech [107, 109], particularly in real-world environments. ASR systems, however,
are also efficient and scalable, enabling low-latency transcription across large volumes of speech. In our framework,
ASR represents the core transcription component within broader STT systems. While ASR specifically handles
speech-to-text conversion, STT encompasses the full pipeline from audio input to final user-facing output, which
may include post-processing, formatting, and transformation stages.

Disfluency Removal Model (DRM). Disfluency removal models — implemented as either lightweight classification

models [119, 120, 205] or large language models (LLM-as-DRMs) [187] — convert verbatim transcriptions into
non-verbatim, fluent text via disfluency removal according to the Shriberg definition [170]. Once disfluencies are
removed, the resulting text approximates the conventions of edited written language - characterized by complete

sentences, standard punctuation, and absent production artifacts — making it more suitable for text-based NLP tools

%It has been shown that people with vision impairments — who are used to interpreting fast speech via screen readers — speak quickly when interacting
with conversational agents, and this fast speech is a cause of system error [34].
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trained primarily on written corpora [159, 209], enabling more effective downstream processing. Traditional DRM
evaluation relies on word-level precision, recall, and F1 scores, which highlight failure modes such as over-deletion
and under-deletion [189]. However, newer metrics such as Z-Scores!'? [189] offer a more linguistically grounded
assessment by revealing which disfluent node types — such as interjections, parentheticals, or edited nodes — have
been removed. Most models are trained and benchmarked on the Switchboard corpus [65], but this dataset’s age
and demographic limitations hinder generalization. A central challenge for DRMs lies in generalizing beyond their
training domains while preserving linguistically meaningful phenomena rather than mistakenly removing them.
Recently, in the LLM-as-a-DRM approach, reasoning has been shown to cause an over-removal failure mode [187]. At
the same time, DRMs’ principal strength is the ability to generate fluent, concise text that enhances the effectiveness
of downstream tasks such as summarization and information extraction.

Large Language Model (LLM). LLMs are conditioned on prior text tokens x1, Xz, .. ., x;, such that P(xs41 | x1:1)

effectively performs next-word prediction for language generation tasks. LLMs are primarily used in the prompt and
adaptation (via low rank adapters [207]) setups. A key challenge for LLMs is susceptibility to hallucination and lack
of grounding in the input audio. A key strength for LLMs is their flexibility and capacity for semantic reasoning,
enabling them to reframe transcripts for diverse user needs.

Speech Language Model (SLM). In contrast to LLMs which are only conditioned on text tokens, SLMs!! are con-

ditioned jointly on prior text tokens x1,x2,...,x; and speech tokens si, s, ..., s, such that P(xs+1 | X1:t, S1:m)
performs next-word prediction using fusion-based architectures, such as cross-attention mechanisms that integrate
speech and text embeddings, or joint encoder-decoder models that process both modalities simultaneously. Unlike
ASR systems which treat speech as input to be converted, SLMs maintain speech as a persistent representational
modality throughout processing, allowing them to leverage prosodic, intonational, and other acoustic cues for
semantic understanding. SLMs are generally used for end-to-end approaches, and can incorporate prosodic and
other information available in the audio modality (in contrast to LLMs). While SLMs can theoretically produce
verbatim transcripts, they are typically optimized for semantic understanding and contextual processing rather
than pure transcription fidelity, making direct speech-to-verbatim conversion less aligned with their architectural
strengths, and differentiating SLM from ASR. Cui et al. [38], Gaido et al. [60], and Arora et al. [12] survey recent
SLM architectural approaches in detail, while Retkowski et al. [154] survey speech summarization approaches.
A key challenge for SLMs is their computational cost, which make them difficult to train and deploy at scale. A
key strength for SLMs is their ability to leverage prosody, intonation, and other speech cues to generate more

contextually accurate transcriptions.

10Disambiguation: These are not z-scores in the sense of standard or normal scores in statistics; Z-Scores are a specialized disfluency removal metric
detailed in [189].
While the more general Multimodal LLMs (MLLMs) model text, audio, speech, and image, in contrast, SLMs model only text and audio.
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Fig. 10. Design Pathways for Producing SpeechSpectrum Components. This diagram illustrates how different tools —
ASR, DRM, LLM, and SLM - can be composed to generate transcript representations across fidelity levels. Arrows indicate
transformation flows between components (e.g., Verbatim to Non-Verbatim to Enhanced), highlighting how modular pipelines
and end-to-end approaches support different routes along the SpeechSpectrum. Rather than a single optimal pathway, the
figure emphasizes flexibility in technical design to enable user-controlled navigation of transcript fidelity. Arrows are drawn
unidirectionally to indicate that it is only possible to faithfully translate to a lower fidelity level from the original audio.
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Component Tools Exemplars
Modular

Speech Waveform — Verbatim ASR Whisper(X) [19, 152], GoogleASR [70], Parakeet-v2 [140]

Verbatim — Non-Verbatim DRM LLM-as-a-DRM [187], Synthetic Curriculum Learning [29],
BERT-Based Parser [120], Planner-Generator [205], Student-
Teacher [199], Bi-LSTM [16], Semi-Supervised [197], Noisy
Channel [118]

Non-Verbatim — Enhanced LLM Fuse [136], Repair [185], Survey [154]

Enhanced — Bullet Points LLM Survey [154]

End-to-End

Speech Waveform — Non-Verbatim | ASR, SLM GoogleASR [70], Acoustic-Lexical [195], LSTM/NIN [160],
E2E [119]

Speech Waveform — Enhanced SLM Medical RTSS [106], NUTSHELL [218], LongHuBERT [32]
Speech Waveform — Bullet Points | SLM No specialized systems, can use SLM prompt-based ap-
proach.

Verbatim — Enhanced LLM Contrastive Student-Teacher [215], Prompt-Based [137],

Prompt-Based [97], Chapterization [105]
Verbatim — Bullet Points LLM FLAN-FinBPS [91], Aligned [89], MeetingBank [82]
Non-Verbatim — Bullet Points LLM No specialized systems, can use LLM prompt-based ap-
proach.

Table 8. Examples of Tools Supporting SpeechSpectrum Components. The table provides exemplars of how modular and
end-to-end approaches can generate different transcript forms along the fidelity spectrum. Modular pipelines (top) separate
responsibilities across components, while end-to-end systems (bottom) map directly from speech to higher-level representations
such as Non-Verbatim, Enhanced, or Bullet Points. Rather than an exhaustive catalog, the table highlights representative methods
that can be mobilized as components to support SpeechSpectrum’s design principles: user-controlled fidelity, context-dependent
optimization, and cross-modal translation.

G.1 Designing Across Modular and End-to-End Systems

A central design question in SpeechSpectrum is whether to adopt a modular pipeline or an end-to-end architecture
for generating linguistic representations. In modular systems, components such as ASRs, DRMs, LLMs, and SLMs
operate sequentially in a cascaded pipeline. In contrast, end-to-end systems map directly from speech input to task
output with a single model. While both paradigms are viable, they embody different trade-offs in terms of flexibility,
interpretability, and user alignment. There is increasing recognition of multimodal speech-language models that
jointly process speech audio and text as a distinct approach from traditional sequential pipelines, evidenced by the
rise of Spoken Language Models (SLM) [12, 204]. This work acknowledges that speech and text have fundamentally
different linguistic properties that cannot be collapsed into a single representational approach - that is, a single
model or pipeline cannot optimally serve all points along the verbatimicity spectrum, as the information preserved
in verbatim transcription differs qualitatively from that in enhanced or summarized forms. Additionally, research
has demonstrated that summarization of speech transcripts differs fundamentally from summarization of written
text transcripts [154], primarily due to the gap in LLM knowledge: LLMs are trained on written data, which is
distributionally different from speech data. This research supports our framework’s emphasis on treating STT as
cross-modal translation rather than mechanical reproduction.
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End-to-end models, including recent SLMs, have demonstrated strong task performance. However, emerging
evidence suggests that their representations remain more phonetic than semantic. For example, Choi et al. [35] show
that near-homophones such as dog and dig are closely clustered, while synonyms such as dog and puppy remain
more distant. This mismatch can be problematic for tasks requiring semantic fidelity. Modular pipelines address
this by allowing specialization of components, such that each component can maintain responsibility for various
aspects of the representation. For example, dedicated ASR modules can be fine-tuned for domain-specific vocabulary
[164, 166, 180], a task where large, general-purpose models still struggle [148]. Additionally, a modular architecture
allows for robust debugging practices [99], an advantage for long-term software maintenance.

Beyond specialization, modularity offers advantages in transparency and accountability. Intermediate outputs
make it possible to perform fine-grained error analysis, which is difficult in monolithic end-to-end models. Similarly,
modular components support auditing — an increasingly important consideration for systems like SpeechSpectrum,
where fairness, bias detection, and accountability are central. Modular, cascaded pipelines remain the most widely
adopted approach in practice [154], in part because they afford this kind of inspection and adaptation.

Consequently, we suggest to > R5: Pursue hybrid architectures that combine the interpretability of
modular pipelines with the performance advantages of end-to-end models (e.g. [13, 87, 168, 179]). For
contexts requiring interpretability, domain adaptation or auditing, modular pipelines may be preferable. In contrast,
in settings where efficiency and simplicity are the priority, end-to-end systems may offer advantages. By pursuing
hybrid architectures, SpeechSpectrum systems can move beyond the dichotomy of modular versus end-to-end,

toward adaptive systems that reflect the situated needs of their users.

G.2 Evaluating Fidelity Beyond Accuracy for STT Systems

Evaluation methodology plays a central role in shaping how users experience STT systems. Yet existing metrics
constrain how performance is understood, often privileging a singular ground truth reference over the multiplicity of
outputs users may find acceptable. ASR systems widely treat the speech-to-text transformation as a technical problem
of achieving accuracy, optimizing for metrics like WER which assumes a single, universal notion of what constitutes
the “correct” textual representation of speech. Semantic-style ASR metrics like BLEU, METEOR, and CHARCUT
(detailed below) have been proposed to mitigate the weaknesses of the exact-matching paradigm of WER. While
these methods can resolve the issue of legitimate semantic preservation in transcription, they do not resolve the issue
of legitimate stylistic differences in transcription - e.g., as previously raised, w- what he was sayin’ and what, what he
was saying are both correct transcriptions which vary only in style [129]. A new STT metric, MULTIREFERENCE
[129], allows for these differences, but is expensive to obtain, requiring multiple ground-truth human annotation
references. Hence, there is a gap in stylistic evaluation methodology for automatic speech recognition systems [37].

Table 9 provides an overview of commonly adopted ASR and Machine Translation (MT) metrics, illustrating
how they differ by domain, unit of analysis, and evaluation principle. These metrics — ranging from word-level
edit distance (WER) to character-level overlap (CER) and n-gram precision/recall measures (BLEU, ROUGE) - were
originally designed for either ASR or MT and later adapted across contexts. While each provides a useful baseline,
they share a common limitation: they assume strict evaluation against a single reference as the definitive measure of
success.

This singular reference-centric assumption becomes problematic when multiple transcriptions may be equally
valid and differ only stylistically. Synonymity-based measures like METEOR offer improvements by rewarding
semantic similarity, but they remain focused on surface-level textual similarity — measuring lexical overlap and
n-gram matches — rather than deeper dimensions such as fluency, style, or contextual appropriateness. As Gaido

et al. [61] note, these constraints limit the interpretive value of evaluation for speech-based systems.
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Metric Domain | Unit of Analysis Evaluation Principle Distinctive Features

WER ASR word-level edit distance All error types are penalized
equally.

CER ASR character-level edit distance Adapted version of WER, all er-
ror types are penalized equally.

BLEU MT word-level n-gram precision-based Utilizes a weighted geometric

[147] mean based on n-gram preci-

sion with a brevity penalty.

ROUGE-N | MT word-level n-gram recall-based Strictly allows exact word
[113] matching.

METEOR MT word-level (primarily) unigram F-based Includes semantic matching for
[21] synonyms, and correlates well

with human evaluations.

CHARCUT| ASR, character-level n-gram F-like via  a | Used for segment visualization
(104] MT longest common subse- | in interactive ASR user in-
quence operation terfaces, where character-level

alignment enables users to see
precisely which portions of the
transcript differ from reference
text, supporting error analysis

and correction workflows.

Table 9. Overview of common STT evaluation metrics, organized by domain, unit of analysis, and evaluation principle.
The table highlights how different metrics - ranging from edit-distance measures (WER, CER) to n-gram and semantic similarity
approaches (BLEU, ROUGE, METEOR, CHARCUT) - emphasize particular types of errors. As shown by our results, this reliance
on single-reference correctness overlooks the stylistic and contextual variation that users value in transcripts, revealing the need
for evaluation approaches aligned with SpeechSpectrum’s principles.

Recent work in large language model (LLM) optimization highlights an alternative paradigm: preference-based
evaluation. Alignment methods such as direct preference optimization (DPO) [153] and proximal policy optimization
(PPO) [163] — as well as many others — illustrate how preference signals can be used to navigate large solution
spaces. Translating this into evaluation, preference-based methods assess alignment with human or LLM judgments
rather than a singular ground truth. This shift is particularly relevant to ASR systems, where outputs occupy a broad
solution space and stylistic variation is not error but an important part of user experience.

Hence, an appropriate metric for the STT solution space is Pairwise Ranking Accuracy (PRA) [56]. Previously
proposed for automatic speech recognition [208], PRA is a meta-metric that measures how often an automated
metric agrees with human (or LLM) preferences when comparing two outputs. PRA reframes evaluation around

preference alignment rather than singular ground-truth matching. PRA is defined as:

N

PRA = % Z 1 [r(xl’-l,xf’) = h(xf,xf’)] (1)
i=1

where N is the total number of pairwise comparisons, x, xf’ are candidate outputs, r(-) is the metric ranking,

and h(-) is the human or LLM ranking (including ties), and 1[-] is the indicator function. In essence, PRA captures

the average agreement between r(-) and h(-) across all pairs of outputs, measuring the alignment of the metric with

human or LLM preferences. By capturing preferences rather than correctness, the learned signal forces no notion of

binary correctness, reframing evaluation around preference alignment.
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More sophisticated alternatives extend this framework: Soft Pairwise Accuracy (SPA) incorporates statistical
significance [190], while Deutsch et al. [43] explicitly model ties. These pairwise methods can be operationalized
through human ratings or via LLM-as-a-Judge frameworks [76]. While promising, each route has trade-offs: human
preference ratings require annotator effort and cost, whereas LLM-based preferences may diverge from human
judgments (as seen in the differences between Figure 3a and Figure 3b), potentially exaggerating or homogenizing
rankings. Importantly, however, preference-based evaluation reframes the human role: rather than constructing “gold-
standard” transcripts under rigid annotation rules, humans can instead rank candidate outputs of variable verbatimicity
— a cognitively lighter task.

Hence, we recommend to > Ré6: Include preference-based evaluation methods like Pairwise Ranking
Accuracy (PRA) in STT evaluation to move beyond the assumption of a singular ground truth. By aligning
evaluation with human judgments, STT systems can better reflect the wide space of valid outputs encountered in
practice.

Related to preference-based evaluation, our empirical findings in §subsection 4.2 reveal important limitations when
using LLMs to model these preferences. > R7: Exercise caution when using LLMs to model user preferences
for transcript fidelity. While LLMs can approximate aggregate patterns, they tend toward extreme or homogenized
preferences that don’t capture the diversity and nuance of human judgment. LLMs may be useful for generating
candidate transcripts across fidelity levels, but ultimate preference modeling and evaluation should involve human
users. This recommendation reinforces that evaluation frameworks must remain grounded in actual user needs

rather than algorithmic proxies.

G.3 Reframing Disfluency Corpora as Design Resources

Disfluencies - i.e. filled pauses (uh, um), false starts, repetitions, repairs, etc. — are common in everyday speech and
often reflect natural interactional processes like planning, hesitation, or emphasis [170]. From a user perspective,
these features may not merely be “errors,” but could be resources that shape how conversation unfolds.

Rather than treating annotator disagreement as error, future datasets could model such variation explicitly
- capturing multiple annotator perspectives, cultures, contextual dependencies, and stylistic preferences. This
reframing shifts the goal from enforcing a singular ground truth toward supporting flexibility, positioning DRMs as
adaptive tools that reflect the diversity of real-world communication.

Existing disfluency removal datasets [65, 124] have primarily relied on linguistic annotators to mark the disfluen-
cies. While this paradigm provides consistency, it overlooks the situated expertise of domain professionals in areas
such as law or medicine, where expectations for “fluent” speech differ substantially. In these domains, what counts
as an error is not only linguistic but also contextual and task-dependent.

Systematically capturing inter-rater reliability offers a valuable design signal for incorporating disagreement.
Cohen’s k and Krippendorff’s « are established inter-rater reliability metrics that can be used here. Utterances with
high inter-rater reliability values may support confident automatic processing, while those with low inter-rater
reliability values could be used to trigger human-in-the-loop review or display multiple renderings. In this way,
disagreement becomes a resource for supporting user awareness of ambiguity.

Therefore, we recommend to > R8: Expand disfluency removal datasets to both incorporate annotator
disagreement (i.e., multiple interpretations of the same utterance) in the form of inter-rater reliability,
and to include domain expertise, in addition to linguistic annotation. This broader approach would enable the
development of DRM systems that are not only technically accurate, but also contextually sensitive and responsive

to the diverse communicative practices found across domains.
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G.4 Extending The SpeechSpectrum Beyond Speech-to-Text

While SpeechSpectrum focuses on speech-to-text conversion, we acknowledge that spoken communication is
inherently multimodal, incorporating visual signals such as gaze, gestures, facial expressions, and body posture
that carry meaning not fully recoverable from audio alone [79, 80, 84, 192]. Future systems should extend the
notion of representational fidelity to these modalities, enabling users to control not only how speech is rendered
into text, but also how non-verbal cues are preserved, summarized, or omitted. As with speech, representational
choices over visual signals involve normative judgments about relevance, salience, and interpretability. Providing
user-controllable fidelity over multimodal cues can improve accessibility (e.g., for d/Deaf or neurodivergent users),
enhance interpretive accuracy in high-stakes contexts such as legal or medical settings, and reduce the risk of systems
imposing hidden assumptions about which communicative signals “matter” Treating multimodal representation as a
spectrum rather than a fixed extraction pipeline generalizes SpeechSpectrum’s core principle: accountability requires
making representational decisions explicit and contestable rather than implicit and system-defined. Therefore, we

recommend to > R9: Extend fidelity control beyond speech-to-text to multimodal communication signals.

H The speechspectrum Python Package (Available via PyPlI)

We provide an open-source Python package, speechspectrum (v1.0.1), which implements the transcript transfor-
mation pipeline. The package operationalizes the SpeechSpectrum framework by enabling generation of multiple
speech-to-text representations along a linguistic fidelity continuum, from verbatim transcripts to compressed

summaries.

H.1 Installation and Usage
The package is distributed via the Python Package Index and can be installed using:
pip install speechspectrum

Source code for the package is available at https://anonymous.4open.science/r/SpeechSpectrum-A3D4. Users
must provide valid OpenAlI API credentials for the underlying language and speech models at runtime. Example
usage demonstrating end-to-end transcript generation is also provided in the accompanying Jupyter notebooks
included in the repository.

The package is released under the MIT License and is intended to support reproducibility, further experimentation,

and future research on user-controllable speech-to-text representations.

H.2 Implementation Details

The package is implemented in Python (Python > 3.8) and relies on OpenAl large language models for downstream
text transformations. Audio-to-text transcription is performed using gpt-4o-mini-transcribe [144], while subse-
quent transformations are carried out using instruction-controlled gpt-5.1-2025-11-13 [143]. The transformation
stages are implemented as independent functions, allowing users to invoke individual steps or compose custom

pipelines.

H.3 Prompt Formulation Details

Corresponding to the prompts shown in Figure 11, we provide details about how the

Verbatim — Non-Verbatim. This stage uses a specialized prompt and a configuration similar to that shown

to perform well in the Disfluency Removal Evaluation Suite (DRES) Teleki et al. [188], but implemented with
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gpt-5.1-2025-11-13 (a newer model). The disfluency definitions and structural categories used in this prompt

follow Shriberg’s [170] framework:

e Reparandum: the segment to be deleted
o Interruption point: where the speaker cuts off the reparandum
o Interregnum: fillers or repair cues (e.g., uh, um, restarts)
e Repair: intendended/fluent speech to be kept
The reference examples used in this prompt can be found on the following pages of Shriberg [170]:
o Example 1: Page 9
e Example 2: Page 14
e Example 3: Page 27
e Example 4: Page 66
e Example 5: Page 68

Non-Verbatim — Enhanced. This step meets the needs of downstream users who expect high-quality output (e.g.,

customer requests).

Enhanced — Bullet Points. Convert an enhanced transcript into concise bullet points using a structured extraction

prompt. This stage reflects customer demand for rapid distillation of spoken content (e.g., industry use cases),

similarly to medical-scribe workflows such as generating SOAP-note style summaries [172].
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Developer Instruction
You are an expert in linguistics.

Verbatim — Non-Verbatim

Using a transcript of spontaneous speech below, clean it by removing disfluencies in line with Shriberg’s structure:
identify the reparandum (the portion to be deleted), interruption point, and interregnum (filled pauses, self-repair
cues) so that the remaining repair constitutes the speaker’s intended fluent sentence. Disfluencies must be deleted
to arrive at the speaker’s intended sequence.

Specifically:

- Remove filler words and sounds (e.g., um, uh, you know) when they occur as interregnum material.

- Remove repeated/self-repaired segments (reparandum) up to the interruption point; keep only the repair portion.
- Do not remove material that constitutes the repair (the intended utterance) or change meaning.

- Preserve meaning, tone, and speaker intent, and maintain grammatical correctness and readability.

- Do not add any new content or reinterpret the speaker’s words.

- Output only the cleaned transcript, with no commentary or annotations.

Example 1:
Input: Show me flights from boston on um monday
Output: Show me flights from boston on monday

Example 2:
Input: Show me the — which early flights go to boston
Output: Which early flights go to boston

Example 3:
Input: which flights leave after eleven — leave after noon
Output: which flights leave after noon

Example 4:
Input: um i guess we’re going to talk describe uh job benefits
Output: we're going to describe job benefits

Example 5:
Input: he - she - she went
Output: she went

Here is the transcript: [TEXT]

Non-Verbatim — Enhanced

Rewrite the following transcription it so it is clear, readable, and well-structured, retaining single paragraph
formatting. Enhance grammar, flow, and clarity.

Here is the text: [TEXT]

Enhanced — Bullet Points
Extract the key points from the following text. Deliver them as clear, concise bullet points. Not necessarily atomic
facts, but condensed bullet points. Do not add anything that isn’t explicitly stated.

Here is the text: [TEXT]

Fig. 11. Prompts used for speechspectrum tool.
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